d7997f98bf4209cfb6c2d5bbc4d96d15bd9350ed
Browse files- silero-vad-unified-256ms-v6.0.0.mlmodelc/analytics/coremldata.bin +3 -0
- silero-vad-unified-256ms-v6.0.0.mlmodelc/coremldata.bin +3 -0
- silero-vad-unified-256ms-v6.0.0.mlmodelc/metadata.json +120 -0
- silero-vad-unified-256ms-v6.0.0.mlmodelc/model.mil +0 -0
- silero-vad-unified-256ms-v6.0.0.mlmodelc/weights/weight.bin +3 -0
- silero-vad-unified-v6.0.0.mlmodelc/analytics/coremldata.bin +3 -0
- silero-vad-unified-v6.0.0.mlmodelc/coremldata.bin +3 -0
- silero-vad-unified-v6.0.0.mlmodelc/metadata.json +117 -0
- silero-vad-unified-v6.0.0.mlmodelc/model.mil +143 -0
- silero-vad-unified-v6.0.0.mlmodelc/weights/weight.bin +3 -0
silero-vad-unified-256ms-v6.0.0.mlmodelc/analytics/coremldata.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:30945d54e32c3f15ec35dc6ee32128a27a6cdc03b0a12ffab04434069c49dfb5
|
| 3 |
+
size 243
|
silero-vad-unified-256ms-v6.0.0.mlmodelc/coremldata.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c3063bd09ba71c26ede0308d7c33591d0770e971a3fcc603ccad7ba1e8fb88d
|
| 3 |
+
size 625
|
silero-vad-unified-256ms-v6.0.0.mlmodelc/metadata.json
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"shortDescription" : "Silero VAD Unified Model 256ms (STFT + Encoder + Decoder) with noisy-OR aggregation",
|
| 4 |
+
"metadataOutputVersion" : "3.0",
|
| 5 |
+
"outputSchema" : [
|
| 6 |
+
{
|
| 7 |
+
"hasShapeFlexibility" : "0",
|
| 8 |
+
"isOptional" : "0",
|
| 9 |
+
"dataType" : "Float32",
|
| 10 |
+
"formattedType" : "MultiArray (Float32 1 × 1 × 1)",
|
| 11 |
+
"shortDescription" : "",
|
| 12 |
+
"shape" : "[1, 1, 1]",
|
| 13 |
+
"name" : "vad_output",
|
| 14 |
+
"type" : "MultiArray"
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"hasShapeFlexibility" : "0",
|
| 18 |
+
"isOptional" : "0",
|
| 19 |
+
"dataType" : "Float32",
|
| 20 |
+
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 21 |
+
"shortDescription" : "",
|
| 22 |
+
"shape" : "[1, 128]",
|
| 23 |
+
"name" : "new_hidden_state",
|
| 24 |
+
"type" : "MultiArray"
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"hasShapeFlexibility" : "0",
|
| 28 |
+
"isOptional" : "0",
|
| 29 |
+
"dataType" : "Float32",
|
| 30 |
+
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 31 |
+
"shortDescription" : "",
|
| 32 |
+
"shape" : "[1, 128]",
|
| 33 |
+
"name" : "new_cell_state",
|
| 34 |
+
"type" : "MultiArray"
|
| 35 |
+
}
|
| 36 |
+
],
|
| 37 |
+
"version" : "6.0.0",
|
| 38 |
+
"modelParameters" : [
|
| 39 |
+
|
| 40 |
+
],
|
| 41 |
+
"author" : "Fluid Infernece + Silero Team",
|
| 42 |
+
"specificationVersion" : 6,
|
| 43 |
+
"storagePrecision" : "Mixed (Float16, Float32)",
|
| 44 |
+
"mlProgramOperationTypeHistogram" : {
|
| 45 |
+
"Concat" : 9,
|
| 46 |
+
"Lstm" : 8,
|
| 47 |
+
"SliceByIndex" : 41,
|
| 48 |
+
"Clip" : 32,
|
| 49 |
+
"Pow" : 16,
|
| 50 |
+
"Transpose" : 16,
|
| 51 |
+
"Sub" : 2,
|
| 52 |
+
"Relu" : 40,
|
| 53 |
+
"Squeeze" : 18,
|
| 54 |
+
"Cast" : 54,
|
| 55 |
+
"Sigmoid" : 8,
|
| 56 |
+
"Add" : 16,
|
| 57 |
+
"ExpandDims" : 26,
|
| 58 |
+
"Sqrt" : 8,
|
| 59 |
+
"Mul" : 7,
|
| 60 |
+
"Conv" : 48,
|
| 61 |
+
"Pad" : 8
|
| 62 |
+
},
|
| 63 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
| 64 |
+
"stateSchema" : [
|
| 65 |
+
|
| 66 |
+
],
|
| 67 |
+
"isUpdatable" : "0",
|
| 68 |
+
"availability" : {
|
| 69 |
+
"macOS" : "12.0",
|
| 70 |
+
"tvOS" : "15.0",
|
| 71 |
+
"visionOS" : "1.0",
|
| 72 |
+
"watchOS" : "8.0",
|
| 73 |
+
"iOS" : "15.0",
|
| 74 |
+
"macCatalyst" : "15.0"
|
| 75 |
+
},
|
| 76 |
+
"modelType" : {
|
| 77 |
+
"name" : "MLModelType_mlProgram"
|
| 78 |
+
},
|
| 79 |
+
"inputSchema" : [
|
| 80 |
+
{
|
| 81 |
+
"hasShapeFlexibility" : "0",
|
| 82 |
+
"isOptional" : "0",
|
| 83 |
+
"dataType" : "Float32",
|
| 84 |
+
"formattedType" : "MultiArray (Float32 1 × 4160)",
|
| 85 |
+
"shortDescription" : "",
|
| 86 |
+
"shape" : "[1, 4160]",
|
| 87 |
+
"name" : "audio_input",
|
| 88 |
+
"type" : "MultiArray"
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"hasShapeFlexibility" : "0",
|
| 92 |
+
"isOptional" : "0",
|
| 93 |
+
"dataType" : "Float32",
|
| 94 |
+
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 95 |
+
"shortDescription" : "",
|
| 96 |
+
"shape" : "[1, 128]",
|
| 97 |
+
"name" : "hidden_state",
|
| 98 |
+
"type" : "MultiArray"
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"hasShapeFlexibility" : "0",
|
| 102 |
+
"isOptional" : "0",
|
| 103 |
+
"dataType" : "Float32",
|
| 104 |
+
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 105 |
+
"shortDescription" : "",
|
| 106 |
+
"shape" : "[1, 128]",
|
| 107 |
+
"name" : "cell_state",
|
| 108 |
+
"type" : "MultiArray"
|
| 109 |
+
}
|
| 110 |
+
],
|
| 111 |
+
"userDefinedMetadata" : {
|
| 112 |
+
"com.github.apple.coremltools.conversion_date" : "2025-09-15",
|
| 113 |
+
"com.github.apple.coremltools.source" : "torch==2.7.0",
|
| 114 |
+
"com.github.apple.coremltools.version" : "9.0b1",
|
| 115 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
| 116 |
+
},
|
| 117 |
+
"generatedClassName" : "silero_vad_unified_256ms_v6_0_0",
|
| 118 |
+
"method" : "predict"
|
| 119 |
+
}
|
| 120 |
+
]
|
silero-vad-unified-256ms-v6.0.0.mlmodelc/model.mil
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
silero-vad-unified-256ms-v6.0.0.mlmodelc/weights/weight.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:853cf34740d3f5061f977ebe2976f7c921b064261c9c4753b3a1196f2dba42b4
|
| 3 |
+
size 882304
|
silero-vad-unified-v6.0.0.mlmodelc/analytics/coremldata.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2141be60ea0adf7acb1232fbcfaffb2be308ae02e6672d3762aedf36611ea9fd
|
| 3 |
+
size 243
|
silero-vad-unified-v6.0.0.mlmodelc/coremldata.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f460dcdf796b19c04bc38ab6e69601831f634e5e74d499487f0c8fe17ca12f0f
|
| 3 |
+
size 593
|
silero-vad-unified-v6.0.0.mlmodelc/metadata.json
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"shortDescription" : "Silero VAD Unified Model (STFT + Encoder + Decoder)",
|
| 4 |
+
"metadataOutputVersion" : "3.0",
|
| 5 |
+
"outputSchema" : [
|
| 6 |
+
{
|
| 7 |
+
"hasShapeFlexibility" : "0",
|
| 8 |
+
"isOptional" : "0",
|
| 9 |
+
"dataType" : "Float32",
|
| 10 |
+
"formattedType" : "MultiArray (Float32 1 × 1 × 1)",
|
| 11 |
+
"shortDescription" : "",
|
| 12 |
+
"shape" : "[1, 1, 1]",
|
| 13 |
+
"name" : "vad_output",
|
| 14 |
+
"type" : "MultiArray"
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"hasShapeFlexibility" : "0",
|
| 18 |
+
"isOptional" : "0",
|
| 19 |
+
"dataType" : "Float32",
|
| 20 |
+
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 21 |
+
"shortDescription" : "",
|
| 22 |
+
"shape" : "[1, 128]",
|
| 23 |
+
"name" : "new_hidden_state",
|
| 24 |
+
"type" : "MultiArray"
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"hasShapeFlexibility" : "0",
|
| 28 |
+
"isOptional" : "0",
|
| 29 |
+
"dataType" : "Float32",
|
| 30 |
+
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 31 |
+
"shortDescription" : "",
|
| 32 |
+
"shape" : "[1, 128]",
|
| 33 |
+
"name" : "new_cell_state",
|
| 34 |
+
"type" : "MultiArray"
|
| 35 |
+
}
|
| 36 |
+
],
|
| 37 |
+
"version" : "6.0.0",
|
| 38 |
+
"modelParameters" : [
|
| 39 |
+
|
| 40 |
+
],
|
| 41 |
+
"author" : "Fluid Infernece + Silero Team",
|
| 42 |
+
"specificationVersion" : 6,
|
| 43 |
+
"storagePrecision" : "Mixed (Float16, Float32)",
|
| 44 |
+
"mlProgramOperationTypeHistogram" : {
|
| 45 |
+
"Lstm" : 1,
|
| 46 |
+
"SliceByIndex" : 2,
|
| 47 |
+
"Clip" : 4,
|
| 48 |
+
"Transpose" : 2,
|
| 49 |
+
"Pow" : 2,
|
| 50 |
+
"Relu" : 5,
|
| 51 |
+
"Squeeze" : 4,
|
| 52 |
+
"Cast" : 12,
|
| 53 |
+
"Sigmoid" : 1,
|
| 54 |
+
"Add" : 2,
|
| 55 |
+
"ExpandDims" : 5,
|
| 56 |
+
"Sqrt" : 1,
|
| 57 |
+
"Conv" : 6,
|
| 58 |
+
"Pad" : 1
|
| 59 |
+
},
|
| 60 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
| 61 |
+
"stateSchema" : [
|
| 62 |
+
|
| 63 |
+
],
|
| 64 |
+
"isUpdatable" : "0",
|
| 65 |
+
"availability" : {
|
| 66 |
+
"macOS" : "12.0",
|
| 67 |
+
"tvOS" : "15.0",
|
| 68 |
+
"visionOS" : "1.0",
|
| 69 |
+
"watchOS" : "8.0",
|
| 70 |
+
"iOS" : "15.0",
|
| 71 |
+
"macCatalyst" : "15.0"
|
| 72 |
+
},
|
| 73 |
+
"modelType" : {
|
| 74 |
+
"name" : "MLModelType_mlProgram"
|
| 75 |
+
},
|
| 76 |
+
"inputSchema" : [
|
| 77 |
+
{
|
| 78 |
+
"hasShapeFlexibility" : "0",
|
| 79 |
+
"isOptional" : "0",
|
| 80 |
+
"dataType" : "Float32",
|
| 81 |
+
"formattedType" : "MultiArray (Float32 1 × 576)",
|
| 82 |
+
"shortDescription" : "",
|
| 83 |
+
"shape" : "[1, 576]",
|
| 84 |
+
"name" : "audio_input",
|
| 85 |
+
"type" : "MultiArray"
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"hasShapeFlexibility" : "0",
|
| 89 |
+
"isOptional" : "0",
|
| 90 |
+
"dataType" : "Float32",
|
| 91 |
+
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 92 |
+
"shortDescription" : "",
|
| 93 |
+
"shape" : "[1, 128]",
|
| 94 |
+
"name" : "hidden_state",
|
| 95 |
+
"type" : "MultiArray"
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"hasShapeFlexibility" : "0",
|
| 99 |
+
"isOptional" : "0",
|
| 100 |
+
"dataType" : "Float32",
|
| 101 |
+
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 102 |
+
"shortDescription" : "",
|
| 103 |
+
"shape" : "[1, 128]",
|
| 104 |
+
"name" : "cell_state",
|
| 105 |
+
"type" : "MultiArray"
|
| 106 |
+
}
|
| 107 |
+
],
|
| 108 |
+
"userDefinedMetadata" : {
|
| 109 |
+
"com.github.apple.coremltools.conversion_date" : "2025-09-15",
|
| 110 |
+
"com.github.apple.coremltools.source" : "torch==2.7.0",
|
| 111 |
+
"com.github.apple.coremltools.version" : "9.0b1",
|
| 112 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
| 113 |
+
},
|
| 114 |
+
"generatedClassName" : "silero_vad_unified_v6_0_0",
|
| 115 |
+
"method" : "predict"
|
| 116 |
+
}
|
| 117 |
+
]
|
silero-vad-unified-v6.0.0.mlmodelc/model.mil
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
program(1.0)
|
| 2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
|
| 3 |
+
{
|
| 4 |
+
func main<ios15>(tensor<fp32, [1, 576]> audio_input, tensor<fp32, [1, 128]> cell_state, tensor<fp32, [1, 128]> hidden_state) {
|
| 5 |
+
tensor<int32, [4]> x_1_pad_0 = const()[name = tensor<string, []>("x_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 64])];
|
| 6 |
+
tensor<string, []> x_1_mode_0 = const()[name = tensor<string, []>("x_1_mode_0"), val = tensor<string, []>("reflect")];
|
| 7 |
+
tensor<string, []> audio_input_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_input_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 8 |
+
tensor<fp16, []> const_0_to_fp16 = const()[name = tensor<string, []>("const_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
| 9 |
+
tensor<fp16, [1, 576]> audio_input_to_fp16 = cast(dtype = audio_input_to_fp16_dtype_0, x = audio_input)[name = tensor<string, []>("cast_11")];
|
| 10 |
+
tensor<fp16, [1, 640]> x_1_cast_fp16 = pad(constant_val = const_0_to_fp16, mode = x_1_mode_0, pad = x_1_pad_0, x = audio_input_to_fp16)[name = tensor<string, []>("x_1_cast_fp16")];
|
| 11 |
+
tensor<int32, [1]> x_3_axes_0 = const()[name = tensor<string, []>("x_3_axes_0"), val = tensor<int32, [1]>([1])];
|
| 12 |
+
tensor<fp16, [1, 1, 640]> x_3_cast_fp16 = expand_dims(axes = x_3_axes_0, x = x_1_cast_fp16)[name = tensor<string, []>("x_3_cast_fp16")];
|
| 13 |
+
tensor<string, []> stft_out_pad_type_0 = const()[name = tensor<string, []>("stft_out_pad_type_0"), val = tensor<string, []>("valid")];
|
| 14 |
+
tensor<int32, [1]> stft_out_strides_0 = const()[name = tensor<string, []>("stft_out_strides_0"), val = tensor<int32, [1]>([128])];
|
| 15 |
+
tensor<int32, [2]> stft_out_pad_0 = const()[name = tensor<string, []>("stft_out_pad_0"), val = tensor<int32, [2]>([0, 0])];
|
| 16 |
+
tensor<int32, [1]> stft_out_dilations_0 = const()[name = tensor<string, []>("stft_out_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 17 |
+
tensor<int32, []> stft_out_groups_0 = const()[name = tensor<string, []>("stft_out_groups_0"), val = tensor<int32, []>(1)];
|
| 18 |
+
tensor<fp16, [258, 1, 256]> stft_forward_basis_to_fp16 = const()[name = tensor<string, []>("stft_forward_basis_to_fp16"), val = tensor<fp16, [258, 1, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
| 19 |
+
tensor<fp16, [1, 258, 4]> stft_out_cast_fp16 = conv(dilations = stft_out_dilations_0, groups = stft_out_groups_0, pad = stft_out_pad_0, pad_type = stft_out_pad_type_0, strides = stft_out_strides_0, weight = stft_forward_basis_to_fp16, x = x_3_cast_fp16)[name = tensor<string, []>("stft_out_cast_fp16")];
|
| 20 |
+
tensor<int32, [3]> var_28_begin_0 = const()[name = tensor<string, []>("op_28_begin_0"), val = tensor<int32, [3]>([0, 0, 0])];
|
| 21 |
+
tensor<int32, [3]> var_28_end_0 = const()[name = tensor<string, []>("op_28_end_0"), val = tensor<int32, [3]>([1, 129, 4])];
|
| 22 |
+
tensor<bool, [3]> var_28_end_mask_0 = const()[name = tensor<string, []>("op_28_end_mask_0"), val = tensor<bool, [3]>([true, false, true])];
|
| 23 |
+
tensor<fp16, [1, 129, 4]> var_28_cast_fp16 = slice_by_index(begin = var_28_begin_0, end = var_28_end_0, end_mask = var_28_end_mask_0, x = stft_out_cast_fp16)[name = tensor<string, []>("op_28_cast_fp16")];
|
| 24 |
+
tensor<int32, [3]> var_31_begin_0 = const()[name = tensor<string, []>("op_31_begin_0"), val = tensor<int32, [3]>([0, 129, 0])];
|
| 25 |
+
tensor<int32, [3]> var_31_end_0 = const()[name = tensor<string, []>("op_31_end_0"), val = tensor<int32, [3]>([1, 258, 4])];
|
| 26 |
+
tensor<bool, [3]> var_31_end_mask_0 = const()[name = tensor<string, []>("op_31_end_mask_0"), val = tensor<bool, [3]>([true, true, true])];
|
| 27 |
+
tensor<fp16, [1, 129, 4]> var_31_cast_fp16 = slice_by_index(begin = var_31_begin_0, end = var_31_end_0, end_mask = var_31_end_mask_0, x = stft_out_cast_fp16)[name = tensor<string, []>("op_31_cast_fp16")];
|
| 28 |
+
tensor<fp16, []> var_7_promoted_to_fp16 = const()[name = tensor<string, []>("op_7_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
|
| 29 |
+
tensor<fp16, [1, 129, 4]> var_33_cast_fp16 = pow(x = var_28_cast_fp16, y = var_7_promoted_to_fp16)[name = tensor<string, []>("op_33_cast_fp16")];
|
| 30 |
+
tensor<fp16, []> var_7_promoted_1_to_fp16 = const()[name = tensor<string, []>("op_7_promoted_1_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
|
| 31 |
+
tensor<fp16, [1, 129, 4]> var_34_cast_fp16 = pow(x = var_31_cast_fp16, y = var_7_promoted_1_to_fp16)[name = tensor<string, []>("op_34_cast_fp16")];
|
| 32 |
+
tensor<fp16, [1, 129, 4]> var_35_cast_fp16 = add(x = var_33_cast_fp16, y = var_34_cast_fp16)[name = tensor<string, []>("op_35_cast_fp16")];
|
| 33 |
+
tensor<fp16, []> var_36_to_fp16 = const()[name = tensor<string, []>("op_36_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 34 |
+
tensor<fp16, [1, 129, 4]> var_37_cast_fp16 = add(x = var_35_cast_fp16, y = var_36_to_fp16)[name = tensor<string, []>("op_37_cast_fp16")];
|
| 35 |
+
tensor<fp16, [1, 129, 4]> input_1_cast_fp16 = sqrt(x = var_37_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
|
| 36 |
+
tensor<string, []> input_3_pad_type_0 = const()[name = tensor<string, []>("input_3_pad_type_0"), val = tensor<string, []>("custom")];
|
| 37 |
+
tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
| 38 |
+
tensor<int32, [1]> input_3_strides_0 = const()[name = tensor<string, []>("input_3_strides_0"), val = tensor<int32, [1]>([1])];
|
| 39 |
+
tensor<int32, [1]> input_3_dilations_0 = const()[name = tensor<string, []>("input_3_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 40 |
+
tensor<int32, []> input_3_groups_0 = const()[name = tensor<string, []>("input_3_groups_0"), val = tensor<int32, []>(1)];
|
| 41 |
+
tensor<fp16, [128, 129, 3]> encoder_layers_0_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_0_weight_to_fp16"), val = tensor<fp16, [128, 129, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132224)))];
|
| 42 |
+
tensor<fp16, [128]> encoder_layers_0_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_0_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(231360)))];
|
| 43 |
+
tensor<fp16, [1, 128, 4]> input_3_cast_fp16 = conv(bias = encoder_layers_0_bias_to_fp16, dilations = input_3_dilations_0, groups = input_3_groups_0, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = input_3_strides_0, weight = encoder_layers_0_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
| 44 |
+
tensor<fp16, [1, 128, 4]> x_5_cast_fp16 = relu(x = input_3_cast_fp16)[name = tensor<string, []>("x_5_cast_fp16")];
|
| 45 |
+
tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(-inf)];
|
| 46 |
+
tensor<fp16, []> var_40_to_fp16 = const()[name = tensor<string, []>("op_40_to_fp16"), val = tensor<fp16, []>(0x1.388p+13)];
|
| 47 |
+
tensor<fp16, [1, 128, 4]> clip_0_cast_fp16 = clip(alpha = const_1_to_fp16, beta = var_40_to_fp16, x = x_5_cast_fp16)[name = tensor<string, []>("clip_0_cast_fp16")];
|
| 48 |
+
tensor<string, []> input_7_pad_type_0 = const()[name = tensor<string, []>("input_7_pad_type_0"), val = tensor<string, []>("custom")];
|
| 49 |
+
tensor<int32, [2]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
| 50 |
+
tensor<int32, [1]> input_7_strides_0 = const()[name = tensor<string, []>("input_7_strides_0"), val = tensor<int32, [1]>([2])];
|
| 51 |
+
tensor<int32, [1]> input_7_dilations_0 = const()[name = tensor<string, []>("input_7_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 52 |
+
tensor<int32, []> input_7_groups_0 = const()[name = tensor<string, []>("input_7_groups_0"), val = tensor<int32, []>(1)];
|
| 53 |
+
tensor<fp16, [64, 128, 3]> encoder_layers_2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_2_weight_to_fp16"), val = tensor<fp16, [64, 128, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(231680)))];
|
| 54 |
+
tensor<fp16, [64]> encoder_layers_2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_2_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(280896)))];
|
| 55 |
+
tensor<fp16, [1, 64, 2]> input_7_cast_fp16 = conv(bias = encoder_layers_2_bias_to_fp16, dilations = input_7_dilations_0, groups = input_7_groups_0, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = input_7_strides_0, weight = encoder_layers_2_weight_to_fp16, x = clip_0_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
|
| 56 |
+
tensor<fp16, [1, 64, 2]> x_7_cast_fp16 = relu(x = input_7_cast_fp16)[name = tensor<string, []>("x_7_cast_fp16")];
|
| 57 |
+
tensor<fp16, []> const_2_to_fp16 = const()[name = tensor<string, []>("const_2_to_fp16"), val = tensor<fp16, []>(-inf)];
|
| 58 |
+
tensor<fp16, [1, 64, 2]> clip_1_cast_fp16 = clip(alpha = const_2_to_fp16, beta = var_40_to_fp16, x = x_7_cast_fp16)[name = tensor<string, []>("clip_1_cast_fp16")];
|
| 59 |
+
tensor<string, []> input_11_pad_type_0 = const()[name = tensor<string, []>("input_11_pad_type_0"), val = tensor<string, []>("custom")];
|
| 60 |
+
tensor<int32, [2]> input_11_pad_0 = const()[name = tensor<string, []>("input_11_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
| 61 |
+
tensor<int32, [1]> input_11_strides_0 = const()[name = tensor<string, []>("input_11_strides_0"), val = tensor<int32, [1]>([2])];
|
| 62 |
+
tensor<int32, [1]> input_11_dilations_0 = const()[name = tensor<string, []>("input_11_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 63 |
+
tensor<int32, []> input_11_groups_0 = const()[name = tensor<string, []>("input_11_groups_0"), val = tensor<int32, []>(1)];
|
| 64 |
+
tensor<fp16, [64, 64, 3]> encoder_layers_4_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_4_weight_to_fp16"), val = tensor<fp16, [64, 64, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(281088)))];
|
| 65 |
+
tensor<fp16, [64]> encoder_layers_4_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_4_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(305728)))];
|
| 66 |
+
tensor<fp16, [1, 64, 1]> input_11_cast_fp16 = conv(bias = encoder_layers_4_bias_to_fp16, dilations = input_11_dilations_0, groups = input_11_groups_0, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = input_11_strides_0, weight = encoder_layers_4_weight_to_fp16, x = clip_1_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
|
| 67 |
+
tensor<fp16, [1, 64, 1]> x_9_cast_fp16 = relu(x = input_11_cast_fp16)[name = tensor<string, []>("x_9_cast_fp16")];
|
| 68 |
+
tensor<fp16, []> const_3_to_fp16 = const()[name = tensor<string, []>("const_3_to_fp16"), val = tensor<fp16, []>(-inf)];
|
| 69 |
+
tensor<fp16, [1, 64, 1]> clip_2_cast_fp16 = clip(alpha = const_3_to_fp16, beta = var_40_to_fp16, x = x_9_cast_fp16)[name = tensor<string, []>("clip_2_cast_fp16")];
|
| 70 |
+
tensor<string, []> input_15_pad_type_0 = const()[name = tensor<string, []>("input_15_pad_type_0"), val = tensor<string, []>("custom")];
|
| 71 |
+
tensor<int32, [2]> input_15_pad_0 = const()[name = tensor<string, []>("input_15_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
| 72 |
+
tensor<int32, [1]> input_15_strides_0 = const()[name = tensor<string, []>("input_15_strides_0"), val = tensor<int32, [1]>([1])];
|
| 73 |
+
tensor<int32, [1]> input_15_dilations_0 = const()[name = tensor<string, []>("input_15_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 74 |
+
tensor<int32, []> input_15_groups_0 = const()[name = tensor<string, []>("input_15_groups_0"), val = tensor<int32, []>(1)];
|
| 75 |
+
tensor<fp16, [128, 64, 3]> encoder_layers_6_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_6_weight_to_fp16"), val = tensor<fp16, [128, 64, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(305920)))];
|
| 76 |
+
tensor<fp16, [128]> encoder_layers_6_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_6_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(355136)))];
|
| 77 |
+
tensor<fp16, [1, 128, 1]> input_15_cast_fp16 = conv(bias = encoder_layers_6_bias_to_fp16, dilations = input_15_dilations_0, groups = input_15_groups_0, pad = input_15_pad_0, pad_type = input_15_pad_type_0, strides = input_15_strides_0, weight = encoder_layers_6_weight_to_fp16, x = clip_2_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
|
| 78 |
+
tensor<fp16, [1, 128, 1]> x_11_cast_fp16 = relu(x = input_15_cast_fp16)[name = tensor<string, []>("x_11_cast_fp16")];
|
| 79 |
+
tensor<fp16, []> const_4_to_fp16 = const()[name = tensor<string, []>("const_4_to_fp16"), val = tensor<fp16, []>(-inf)];
|
| 80 |
+
tensor<fp16, [1, 128, 1]> clip_3_cast_fp16 = clip(alpha = const_4_to_fp16, beta = var_40_to_fp16, x = x_11_cast_fp16)[name = tensor<string, []>("clip_3_cast_fp16")];
|
| 81 |
+
tensor<int32, [3]> transpose_0_perm_0 = const()[name = tensor<string, []>("transpose_0_perm_0"), val = tensor<int32, [3]>([2, 0, 1])];
|
| 82 |
+
tensor<string, []> transpose_0_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("transpose_0_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 83 |
+
tensor<int32, [1]> hx_1_axes_0 = const()[name = tensor<string, []>("hx_1_axes_0"), val = tensor<int32, [1]>([0])];
|
| 84 |
+
tensor<string, []> hidden_state_to_fp16_dtype_0 = const()[name = tensor<string, []>("hidden_state_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 85 |
+
tensor<fp16, [1, 128]> hidden_state_to_fp16 = cast(dtype = hidden_state_to_fp16_dtype_0, x = hidden_state)[name = tensor<string, []>("cast_9")];
|
| 86 |
+
tensor<fp16, [1, 1, 128]> hx_1_cast_fp16 = expand_dims(axes = hx_1_axes_0, x = hidden_state_to_fp16)[name = tensor<string, []>("hx_1_cast_fp16")];
|
| 87 |
+
tensor<int32, [1]> hx_axes_0 = const()[name = tensor<string, []>("hx_axes_0"), val = tensor<int32, [1]>([0])];
|
| 88 |
+
tensor<string, []> cell_state_to_fp16_dtype_0 = const()[name = tensor<string, []>("cell_state_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 89 |
+
tensor<fp16, [1, 128]> cell_state_to_fp16 = cast(dtype = cell_state_to_fp16_dtype_0, x = cell_state)[name = tensor<string, []>("cast_8")];
|
| 90 |
+
tensor<fp16, [1, 1, 128]> hx_cast_fp16 = expand_dims(axes = hx_axes_0, x = cell_state_to_fp16)[name = tensor<string, []>("hx_cast_fp16")];
|
| 91 |
+
tensor<fp32, [512]> concat_0 = const()[name = tensor<string, []>("concat_0"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(355456)))];
|
| 92 |
+
tensor<fp32, [512, 128]> concat_1 = const()[name = tensor<string, []>("concat_1"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(357568)))];
|
| 93 |
+
tensor<fp32, [512, 128]> concat_2 = const()[name = tensor<string, []>("concat_2"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(619776)))];
|
| 94 |
+
tensor<int32, [1]> lstm_out_batch_first_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
| 95 |
+
tensor<fp16, [1, 128]> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16 = squeeze(axes = lstm_out_batch_first_lstm_h0_squeeze_axes_0, x = hx_1_cast_fp16)[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_cast_fp16")];
|
| 96 |
+
tensor<string, []> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 97 |
+
tensor<int32, [1]> lstm_out_batch_first_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
| 98 |
+
tensor<fp16, [1, 128]> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16 = squeeze(axes = lstm_out_batch_first_lstm_c0_squeeze_axes_0, x = hx_cast_fp16)[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_cast_fp16")];
|
| 99 |
+
tensor<string, []> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 100 |
+
tensor<string, []> lstm_out_batch_first_direction_0 = const()[name = tensor<string, []>("lstm_out_batch_first_direction_0"), val = tensor<string, []>("forward")];
|
| 101 |
+
tensor<bool, []> lstm_out_batch_first_output_sequence_0 = const()[name = tensor<string, []>("lstm_out_batch_first_output_sequence_0"), val = tensor<bool, []>(true)];
|
| 102 |
+
tensor<string, []> lstm_out_batch_first_recurrent_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
|
| 103 |
+
tensor<string, []> lstm_out_batch_first_cell_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_cell_activation_0"), val = tensor<string, []>("tanh")];
|
| 104 |
+
tensor<string, []> lstm_out_batch_first_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_activation_0"), val = tensor<string, []>("tanh")];
|
| 105 |
+
tensor<fp32, [1, 128]> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32 = cast(dtype = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0, x = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16)[name = tensor<string, []>("cast_6")];
|
| 106 |
+
tensor<fp32, [1, 128]> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32 = cast(dtype = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0, x = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16)[name = tensor<string, []>("cast_7")];
|
| 107 |
+
tensor<fp16, [1, 1, 128]> transpose_0_cast_fp16 = transpose(perm = transpose_0_perm_0, x = clip_3_cast_fp16)[name = tensor<string, []>("transpose_3")];
|
| 108 |
+
tensor<fp32, [1, 1, 128]> transpose_0_cast_fp16_to_fp32 = cast(dtype = transpose_0_cast_fp16_to_fp32_dtype_0, x = transpose_0_cast_fp16)[name = tensor<string, []>("cast_10")];
|
| 109 |
+
tensor<fp32, [1, 1, 128]> lstm_out_batch_first_0, tensor<fp32, [1, 128]> lstm_out_batch_first_1, tensor<fp32, [1, 128]> lstm_out_batch_first_2 = lstm(activation = lstm_out_batch_first_activation_0, bias = concat_0, cell_activation = lstm_out_batch_first_cell_activation_0, direction = lstm_out_batch_first_direction_0, initial_c = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32, initial_h = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32, output_sequence = lstm_out_batch_first_output_sequence_0, recurrent_activation = lstm_out_batch_first_recurrent_activation_0, weight_hh = concat_2, weight_ih = concat_1, x = transpose_0_cast_fp16_to_fp32)[name = tensor<string, []>("lstm_out_batch_first")];
|
| 110 |
+
tensor<int32, [3]> transpose_1_perm_0 = const()[name = tensor<string, []>("transpose_1_perm_0"), val = tensor<int32, [3]>([1, 2, 0])];
|
| 111 |
+
tensor<string, []> lstm_out_batch_first_0_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_0_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 112 |
+
tensor<int32, [1]> hn_axes_0 = const()[name = tensor<string, []>("hn_axes_0"), val = tensor<int32, [1]>([0])];
|
| 113 |
+
tensor<string, []> lstm_out_batch_first_1_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_1_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 114 |
+
tensor<fp16, [1, 128]> lstm_out_batch_first_1_to_fp16 = cast(dtype = lstm_out_batch_first_1_to_fp16_dtype_0, x = lstm_out_batch_first_1)[name = tensor<string, []>("cast_4")];
|
| 115 |
+
tensor<fp16, [1, 1, 128]> hn_cast_fp16 = expand_dims(axes = hn_axes_0, x = lstm_out_batch_first_1_to_fp16)[name = tensor<string, []>("hn_cast_fp16")];
|
| 116 |
+
tensor<int32, [1]> cn_axes_0 = const()[name = tensor<string, []>("cn_axes_0"), val = tensor<int32, [1]>([0])];
|
| 117 |
+
tensor<string, []> lstm_out_batch_first_2_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_2_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 118 |
+
tensor<fp16, [1, 128]> lstm_out_batch_first_2_to_fp16 = cast(dtype = lstm_out_batch_first_2_to_fp16_dtype_0, x = lstm_out_batch_first_2)[name = tensor<string, []>("cast_3")];
|
| 119 |
+
tensor<fp16, [1, 1, 128]> cn_cast_fp16 = expand_dims(axes = cn_axes_0, x = lstm_out_batch_first_2_to_fp16)[name = tensor<string, []>("cn_cast_fp16")];
|
| 120 |
+
tensor<fp16, [1, 1, 128]> lstm_out_batch_first_0_to_fp16 = cast(dtype = lstm_out_batch_first_0_to_fp16_dtype_0, x = lstm_out_batch_first_0)[name = tensor<string, []>("cast_5")];
|
| 121 |
+
tensor<fp16, [1, 128, 1]> transpose_1_cast_fp16 = transpose(perm = transpose_1_perm_0, x = lstm_out_batch_first_0_to_fp16)[name = tensor<string, []>("transpose_2")];
|
| 122 |
+
tensor<fp16, [1, 128, 1]> input_23_cast_fp16 = relu(x = transpose_1_cast_fp16)[name = tensor<string, []>("input_23_cast_fp16")];
|
| 123 |
+
tensor<string, []> input_pad_type_0 = const()[name = tensor<string, []>("input_pad_type_0"), val = tensor<string, []>("valid")];
|
| 124 |
+
tensor<int32, [1]> input_strides_0 = const()[name = tensor<string, []>("input_strides_0"), val = tensor<int32, [1]>([1])];
|
| 125 |
+
tensor<int32, [2]> input_pad_0 = const()[name = tensor<string, []>("input_pad_0"), val = tensor<int32, [2]>([0, 0])];
|
| 126 |
+
tensor<int32, [1]> input_dilations_0 = const()[name = tensor<string, []>("input_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 127 |
+
tensor<int32, []> input_groups_0 = const()[name = tensor<string, []>("input_groups_0"), val = tensor<int32, []>(1)];
|
| 128 |
+
tensor<fp16, [1, 128, 1]> decoder_final_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_final_conv_weight_to_fp16"), val = tensor<fp16, [1, 128, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(881984)))];
|
| 129 |
+
tensor<fp16, [1]> decoder_final_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_final_conv_bias_to_fp16"), val = tensor<fp16, [1]>([0x1.dfp-5])];
|
| 130 |
+
tensor<fp16, [1, 1, 1]> input_cast_fp16 = conv(bias = decoder_final_conv_bias_to_fp16, dilations = input_dilations_0, groups = input_groups_0, pad = input_pad_0, pad_type = input_pad_type_0, strides = input_strides_0, weight = decoder_final_conv_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
| 131 |
+
tensor<fp16, [1, 1, 1]> var_124_cast_fp16 = sigmoid(x = input_cast_fp16)[name = tensor<string, []>("op_124_cast_fp16")];
|
| 132 |
+
tensor<string, []> var_124_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_124_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 133 |
+
tensor<int32, [1]> var_125_axes_0 = const()[name = tensor<string, []>("op_125_axes_0"), val = tensor<int32, [1]>([0])];
|
| 134 |
+
tensor<fp16, [1, 128]> var_125_cast_fp16 = squeeze(axes = var_125_axes_0, x = hn_cast_fp16)[name = tensor<string, []>("op_125_cast_fp16")];
|
| 135 |
+
tensor<string, []> var_125_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_125_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 136 |
+
tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([0])];
|
| 137 |
+
tensor<fp16, [1, 128]> var_126_cast_fp16 = squeeze(axes = var_126_axes_0, x = cn_cast_fp16)[name = tensor<string, []>("op_126_cast_fp16")];
|
| 138 |
+
tensor<string, []> var_126_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_126_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 139 |
+
tensor<fp32, [1, 128]> new_cell_state = cast(dtype = var_126_cast_fp16_to_fp32_dtype_0, x = var_126_cast_fp16)[name = tensor<string, []>("cast_0")];
|
| 140 |
+
tensor<fp32, [1, 128]> new_hidden_state = cast(dtype = var_125_cast_fp16_to_fp32_dtype_0, x = var_125_cast_fp16)[name = tensor<string, []>("cast_1")];
|
| 141 |
+
tensor<fp32, [1, 1, 1]> vad_output = cast(dtype = var_124_cast_fp16_to_fp32_dtype_0, x = var_124_cast_fp16)[name = tensor<string, []>("cast_2")];
|
| 142 |
+
} -> (vad_output, new_hidden_state, new_cell_state);
|
| 143 |
+
}
|
silero-vad-unified-v6.0.0.mlmodelc/weights/weight.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:853cf34740d3f5061f977ebe2976f7c921b064261c9c4753b3a1196f2dba42b4
|
| 3 |
+
size 882304
|