Delete silero-vad-unified-v6.0.0.mlmodelc
Browse files
silero-vad-unified-v6.0.0.mlmodelc/analytics/coremldata.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d622bd31042ab8fdd009a40a45c2cd8c9611927841bdd7bfc8ad40d16b6e3f7e
|
| 3 |
-
size 243
|
|
|
|
|
|
|
|
|
|
|
|
silero-vad-unified-v6.0.0.mlmodelc/coremldata.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:43933b65aab49a674b94a61e6af794f1fae327961a02160a0823dbfb174e91ce
|
| 3 |
-
size 593
|
|
|
|
|
|
|
|
|
|
|
|
silero-vad-unified-v6.0.0.mlmodelc/metadata.json
DELETED
|
@@ -1,118 +0,0 @@
|
|
| 1 |
-
[
|
| 2 |
-
{
|
| 3 |
-
"shortDescription" : "Silero VAD Unified Model (STFT + Encoder + Decoder)",
|
| 4 |
-
"metadataOutputVersion" : "3.0",
|
| 5 |
-
"outputSchema" : [
|
| 6 |
-
{
|
| 7 |
-
"hasShapeFlexibility" : "0",
|
| 8 |
-
"isOptional" : "0",
|
| 9 |
-
"dataType" : "Float32",
|
| 10 |
-
"formattedType" : "MultiArray (Float32 1 × 1 × 1)",
|
| 11 |
-
"shortDescription" : "",
|
| 12 |
-
"shape" : "[1, 1, 1]",
|
| 13 |
-
"name" : "vad_output",
|
| 14 |
-
"type" : "MultiArray"
|
| 15 |
-
},
|
| 16 |
-
{
|
| 17 |
-
"hasShapeFlexibility" : "0",
|
| 18 |
-
"isOptional" : "0",
|
| 19 |
-
"dataType" : "Float32",
|
| 20 |
-
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 21 |
-
"shortDescription" : "",
|
| 22 |
-
"shape" : "[1, 128]",
|
| 23 |
-
"name" : "new_hidden_state",
|
| 24 |
-
"type" : "MultiArray"
|
| 25 |
-
},
|
| 26 |
-
{
|
| 27 |
-
"hasShapeFlexibility" : "0",
|
| 28 |
-
"isOptional" : "0",
|
| 29 |
-
"dataType" : "Float32",
|
| 30 |
-
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 31 |
-
"shortDescription" : "",
|
| 32 |
-
"shape" : "[1, 128]",
|
| 33 |
-
"name" : "new_cell_state",
|
| 34 |
-
"type" : "MultiArray"
|
| 35 |
-
}
|
| 36 |
-
],
|
| 37 |
-
"version" : "6.0.0",
|
| 38 |
-
"modelParameters" : [
|
| 39 |
-
|
| 40 |
-
],
|
| 41 |
-
"author" : "Fluid Infernece + Silero Team",
|
| 42 |
-
"specificationVersion" : 6,
|
| 43 |
-
"storagePrecision" : "Mixed (Float16, Float32)",
|
| 44 |
-
"mlProgramOperationTypeHistogram" : {
|
| 45 |
-
"Log" : 1,
|
| 46 |
-
"Lstm" : 1,
|
| 47 |
-
"SliceByIndex" : 2,
|
| 48 |
-
"Clip" : 4,
|
| 49 |
-
"Transpose" : 2,
|
| 50 |
-
"Pow" : 2,
|
| 51 |
-
"Relu" : 4,
|
| 52 |
-
"Squeeze" : 4,
|
| 53 |
-
"Cast" : 12,
|
| 54 |
-
"Sigmoid" : 1,
|
| 55 |
-
"Add" : 3,
|
| 56 |
-
"Sqrt" : 1,
|
| 57 |
-
"ExpandDims" : 5,
|
| 58 |
-
"ReduceMean" : 1,
|
| 59 |
-
"Conv" : 6
|
| 60 |
-
},
|
| 61 |
-
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
| 62 |
-
"stateSchema" : [
|
| 63 |
-
|
| 64 |
-
],
|
| 65 |
-
"isUpdatable" : "0",
|
| 66 |
-
"availability" : {
|
| 67 |
-
"macOS" : "12.0",
|
| 68 |
-
"tvOS" : "15.0",
|
| 69 |
-
"visionOS" : "1.0",
|
| 70 |
-
"watchOS" : "8.0",
|
| 71 |
-
"iOS" : "15.0",
|
| 72 |
-
"macCatalyst" : "15.0"
|
| 73 |
-
},
|
| 74 |
-
"modelType" : {
|
| 75 |
-
"name" : "MLModelType_mlProgram"
|
| 76 |
-
},
|
| 77 |
-
"inputSchema" : [
|
| 78 |
-
{
|
| 79 |
-
"hasShapeFlexibility" : "0",
|
| 80 |
-
"isOptional" : "0",
|
| 81 |
-
"dataType" : "Float32",
|
| 82 |
-
"formattedType" : "MultiArray (Float32 1 × 576)",
|
| 83 |
-
"shortDescription" : "",
|
| 84 |
-
"shape" : "[1, 576]",
|
| 85 |
-
"name" : "audio_input",
|
| 86 |
-
"type" : "MultiArray"
|
| 87 |
-
},
|
| 88 |
-
{
|
| 89 |
-
"hasShapeFlexibility" : "0",
|
| 90 |
-
"isOptional" : "0",
|
| 91 |
-
"dataType" : "Float32",
|
| 92 |
-
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 93 |
-
"shortDescription" : "",
|
| 94 |
-
"shape" : "[1, 128]",
|
| 95 |
-
"name" : "hidden_state",
|
| 96 |
-
"type" : "MultiArray"
|
| 97 |
-
},
|
| 98 |
-
{
|
| 99 |
-
"hasShapeFlexibility" : "0",
|
| 100 |
-
"isOptional" : "0",
|
| 101 |
-
"dataType" : "Float32",
|
| 102 |
-
"formattedType" : "MultiArray (Float32 1 × 128)",
|
| 103 |
-
"shortDescription" : "",
|
| 104 |
-
"shape" : "[1, 128]",
|
| 105 |
-
"name" : "cell_state",
|
| 106 |
-
"type" : "MultiArray"
|
| 107 |
-
}
|
| 108 |
-
],
|
| 109 |
-
"userDefinedMetadata" : {
|
| 110 |
-
"com.github.apple.coremltools.conversion_date" : "2025-09-15",
|
| 111 |
-
"com.github.apple.coremltools.source" : "torch==2.7.0",
|
| 112 |
-
"com.github.apple.coremltools.version" : "9.0b1",
|
| 113 |
-
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
| 114 |
-
},
|
| 115 |
-
"generatedClassName" : "silero_vad_unified_v6_0_0",
|
| 116 |
-
"method" : "predict"
|
| 117 |
-
}
|
| 118 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
silero-vad-unified-v6.0.0.mlmodelc/model.mil
DELETED
|
@@ -1,145 +0,0 @@
|
|
| 1 |
-
program(1.0)
|
| 2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
|
| 3 |
-
{
|
| 4 |
-
func main<ios15>(tensor<fp32, [1, 576]> audio_input, tensor<fp32, [1, 128]> cell_state, tensor<fp32, [1, 128]> hidden_state) {
|
| 5 |
-
tensor<int32, [1]> x_1_axes_0 = const()[name = tensor<string, []>("x_1_axes_0"), val = tensor<int32, [1]>([1])];
|
| 6 |
-
tensor<string, []> audio_input_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_input_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 7 |
-
tensor<fp16, [1, 576]> audio_input_to_fp16 = cast(dtype = audio_input_to_fp16_dtype_0, x = audio_input)[name = tensor<string, []>("cast_11")];
|
| 8 |
-
tensor<fp16, [1, 1, 576]> x_1_cast_fp16 = expand_dims(axes = x_1_axes_0, x = audio_input_to_fp16)[name = tensor<string, []>("x_1_cast_fp16")];
|
| 9 |
-
tensor<string, []> stft_out_pad_type_0 = const()[name = tensor<string, []>("stft_out_pad_type_0"), val = tensor<string, []>("custom")];
|
| 10 |
-
tensor<int32, [2]> stft_out_pad_0 = const()[name = tensor<string, []>("stft_out_pad_0"), val = tensor<int32, [2]>([128, 128])];
|
| 11 |
-
tensor<int32, [1]> stft_out_strides_0 = const()[name = tensor<string, []>("stft_out_strides_0"), val = tensor<int32, [1]>([256])];
|
| 12 |
-
tensor<int32, [1]> stft_out_dilations_0 = const()[name = tensor<string, []>("stft_out_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 13 |
-
tensor<int32, []> stft_out_groups_0 = const()[name = tensor<string, []>("stft_out_groups_0"), val = tensor<int32, []>(1)];
|
| 14 |
-
tensor<fp16, [258, 1, 256]> stft_forward_basis_to_fp16 = const()[name = tensor<string, []>("stft_forward_basis_to_fp16"), val = tensor<fp16, [258, 1, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
| 15 |
-
tensor<fp16, [1, 258, 3]> stft_out_cast_fp16 = conv(dilations = stft_out_dilations_0, groups = stft_out_groups_0, pad = stft_out_pad_0, pad_type = stft_out_pad_type_0, strides = stft_out_strides_0, weight = stft_forward_basis_to_fp16, x = x_1_cast_fp16)[name = tensor<string, []>("stft_out_cast_fp16")];
|
| 16 |
-
tensor<int32, [3]> var_25_begin_0 = const()[name = tensor<string, []>("op_25_begin_0"), val = tensor<int32, [3]>([0, 0, 0])];
|
| 17 |
-
tensor<int32, [3]> var_25_end_0 = const()[name = tensor<string, []>("op_25_end_0"), val = tensor<int32, [3]>([1, 129, 3])];
|
| 18 |
-
tensor<bool, [3]> var_25_end_mask_0 = const()[name = tensor<string, []>("op_25_end_mask_0"), val = tensor<bool, [3]>([true, false, true])];
|
| 19 |
-
tensor<fp16, [1, 129, 3]> var_25_cast_fp16 = slice_by_index(begin = var_25_begin_0, end = var_25_end_0, end_mask = var_25_end_mask_0, x = stft_out_cast_fp16)[name = tensor<string, []>("op_25_cast_fp16")];
|
| 20 |
-
tensor<int32, [3]> var_28_begin_0 = const()[name = tensor<string, []>("op_28_begin_0"), val = tensor<int32, [3]>([0, 129, 0])];
|
| 21 |
-
tensor<int32, [3]> var_28_end_0 = const()[name = tensor<string, []>("op_28_end_0"), val = tensor<int32, [3]>([1, 258, 3])];
|
| 22 |
-
tensor<bool, [3]> var_28_end_mask_0 = const()[name = tensor<string, []>("op_28_end_mask_0"), val = tensor<bool, [3]>([true, true, true])];
|
| 23 |
-
tensor<fp16, [1, 129, 3]> var_28_cast_fp16 = slice_by_index(begin = var_28_begin_0, end = var_28_end_0, end_mask = var_28_end_mask_0, x = stft_out_cast_fp16)[name = tensor<string, []>("op_28_cast_fp16")];
|
| 24 |
-
tensor<fp16, []> var_7_promoted_to_fp16 = const()[name = tensor<string, []>("op_7_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
|
| 25 |
-
tensor<fp16, [1, 129, 3]> var_30_cast_fp16 = pow(x = var_25_cast_fp16, y = var_7_promoted_to_fp16)[name = tensor<string, []>("op_30_cast_fp16")];
|
| 26 |
-
tensor<fp16, []> var_7_promoted_1_to_fp16 = const()[name = tensor<string, []>("op_7_promoted_1_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
|
| 27 |
-
tensor<fp16, [1, 129, 3]> var_31_cast_fp16 = pow(x = var_28_cast_fp16, y = var_7_promoted_1_to_fp16)[name = tensor<string, []>("op_31_cast_fp16")];
|
| 28 |
-
tensor<fp16, [1, 129, 3]> var_32_cast_fp16 = add(x = var_30_cast_fp16, y = var_31_cast_fp16)[name = tensor<string, []>("op_32_cast_fp16")];
|
| 29 |
-
tensor<fp16, []> var_33_to_fp16 = const()[name = tensor<string, []>("op_33_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 30 |
-
tensor<fp16, [1, 129, 3]> var_34_cast_fp16 = add(x = var_32_cast_fp16, y = var_33_to_fp16)[name = tensor<string, []>("op_34_cast_fp16")];
|
| 31 |
-
tensor<fp16, [1, 129, 3]> magnitude_cast_fp16 = sqrt(x = var_34_cast_fp16)[name = tensor<string, []>("magnitude_cast_fp16")];
|
| 32 |
-
tensor<fp16, []> var_36_to_fp16 = const()[name = tensor<string, []>("op_36_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
| 33 |
-
tensor<fp16, [1, 129, 3]> var_37_cast_fp16 = add(x = magnitude_cast_fp16, y = var_36_to_fp16)[name = tensor<string, []>("op_37_cast_fp16")];
|
| 34 |
-
tensor<fp16, []> input_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
| 35 |
-
tensor<fp16, [1, 129, 3]> input_1_cast_fp16 = log(epsilon = input_1_epsilon_0_to_fp16, x = var_37_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
|
| 36 |
-
tensor<string, []> input_3_pad_type_0 = const()[name = tensor<string, []>("input_3_pad_type_0"), val = tensor<string, []>("custom")];
|
| 37 |
-
tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
| 38 |
-
tensor<int32, [1]> input_3_strides_0 = const()[name = tensor<string, []>("input_3_strides_0"), val = tensor<int32, [1]>([1])];
|
| 39 |
-
tensor<int32, [1]> input_3_dilations_0 = const()[name = tensor<string, []>("input_3_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 40 |
-
tensor<int32, []> input_3_groups_0 = const()[name = tensor<string, []>("input_3_groups_0"), val = tensor<int32, []>(1)];
|
| 41 |
-
tensor<fp16, [128, 129, 3]> encoder_layers_0_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_0_weight_to_fp16"), val = tensor<fp16, [128, 129, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132224)))];
|
| 42 |
-
tensor<fp16, [128]> encoder_layers_0_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_0_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(231360)))];
|
| 43 |
-
tensor<fp16, [1, 128, 3]> input_3_cast_fp16 = conv(bias = encoder_layers_0_bias_to_fp16, dilations = input_3_dilations_0, groups = input_3_groups_0, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = input_3_strides_0, weight = encoder_layers_0_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
| 44 |
-
tensor<fp16, [1, 128, 3]> x_3_cast_fp16 = relu(x = input_3_cast_fp16)[name = tensor<string, []>("x_3_cast_fp16")];
|
| 45 |
-
tensor<fp16, []> const_0_to_fp16 = const()[name = tensor<string, []>("const_0_to_fp16"), val = tensor<fp16, []>(-inf)];
|
| 46 |
-
tensor<fp16, []> var_39_to_fp16 = const()[name = tensor<string, []>("op_39_to_fp16"), val = tensor<fp16, []>(0x1.388p+13)];
|
| 47 |
-
tensor<fp16, [1, 128, 3]> clip_0_cast_fp16 = clip(alpha = const_0_to_fp16, beta = var_39_to_fp16, x = x_3_cast_fp16)[name = tensor<string, []>("clip_0_cast_fp16")];
|
| 48 |
-
tensor<string, []> input_7_pad_type_0 = const()[name = tensor<string, []>("input_7_pad_type_0"), val = tensor<string, []>("custom")];
|
| 49 |
-
tensor<int32, [2]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
| 50 |
-
tensor<int32, [1]> input_7_strides_0 = const()[name = tensor<string, []>("input_7_strides_0"), val = tensor<int32, [1]>([1])];
|
| 51 |
-
tensor<int32, [1]> input_7_dilations_0 = const()[name = tensor<string, []>("input_7_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 52 |
-
tensor<int32, []> input_7_groups_0 = const()[name = tensor<string, []>("input_7_groups_0"), val = tensor<int32, []>(1)];
|
| 53 |
-
tensor<fp16, [64, 128, 3]> encoder_layers_2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_2_weight_to_fp16"), val = tensor<fp16, [64, 128, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(231680)))];
|
| 54 |
-
tensor<fp16, [64]> encoder_layers_2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_2_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(280896)))];
|
| 55 |
-
tensor<fp16, [1, 64, 3]> input_7_cast_fp16 = conv(bias = encoder_layers_2_bias_to_fp16, dilations = input_7_dilations_0, groups = input_7_groups_0, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = input_7_strides_0, weight = encoder_layers_2_weight_to_fp16, x = clip_0_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
|
| 56 |
-
tensor<fp16, [1, 64, 3]> x_5_cast_fp16 = relu(x = input_7_cast_fp16)[name = tensor<string, []>("x_5_cast_fp16")];
|
| 57 |
-
tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(-inf)];
|
| 58 |
-
tensor<fp16, [1, 64, 3]> clip_1_cast_fp16 = clip(alpha = const_1_to_fp16, beta = var_39_to_fp16, x = x_5_cast_fp16)[name = tensor<string, []>("clip_1_cast_fp16")];
|
| 59 |
-
tensor<string, []> input_11_pad_type_0 = const()[name = tensor<string, []>("input_11_pad_type_0"), val = tensor<string, []>("custom")];
|
| 60 |
-
tensor<int32, [2]> input_11_pad_0 = const()[name = tensor<string, []>("input_11_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
| 61 |
-
tensor<int32, [1]> input_11_strides_0 = const()[name = tensor<string, []>("input_11_strides_0"), val = tensor<int32, [1]>([1])];
|
| 62 |
-
tensor<int32, [1]> input_11_dilations_0 = const()[name = tensor<string, []>("input_11_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 63 |
-
tensor<int32, []> input_11_groups_0 = const()[name = tensor<string, []>("input_11_groups_0"), val = tensor<int32, []>(1)];
|
| 64 |
-
tensor<fp16, [64, 64, 3]> encoder_layers_4_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_4_weight_to_fp16"), val = tensor<fp16, [64, 64, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(281088)))];
|
| 65 |
-
tensor<fp16, [64]> encoder_layers_4_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_4_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(305728)))];
|
| 66 |
-
tensor<fp16, [1, 64, 3]> input_11_cast_fp16 = conv(bias = encoder_layers_4_bias_to_fp16, dilations = input_11_dilations_0, groups = input_11_groups_0, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = input_11_strides_0, weight = encoder_layers_4_weight_to_fp16, x = clip_1_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
|
| 67 |
-
tensor<fp16, [1, 64, 3]> x_7_cast_fp16 = relu(x = input_11_cast_fp16)[name = tensor<string, []>("x_7_cast_fp16")];
|
| 68 |
-
tensor<fp16, []> const_2_to_fp16 = const()[name = tensor<string, []>("const_2_to_fp16"), val = tensor<fp16, []>(-inf)];
|
| 69 |
-
tensor<fp16, [1, 64, 3]> clip_2_cast_fp16 = clip(alpha = const_2_to_fp16, beta = var_39_to_fp16, x = x_7_cast_fp16)[name = tensor<string, []>("clip_2_cast_fp16")];
|
| 70 |
-
tensor<string, []> input_15_pad_type_0 = const()[name = tensor<string, []>("input_15_pad_type_0"), val = tensor<string, []>("custom")];
|
| 71 |
-
tensor<int32, [2]> input_15_pad_0 = const()[name = tensor<string, []>("input_15_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
| 72 |
-
tensor<int32, [1]> input_15_strides_0 = const()[name = tensor<string, []>("input_15_strides_0"), val = tensor<int32, [1]>([1])];
|
| 73 |
-
tensor<int32, [1]> input_15_dilations_0 = const()[name = tensor<string, []>("input_15_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 74 |
-
tensor<int32, []> input_15_groups_0 = const()[name = tensor<string, []>("input_15_groups_0"), val = tensor<int32, []>(1)];
|
| 75 |
-
tensor<fp16, [128, 64, 3]> encoder_layers_6_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_6_weight_to_fp16"), val = tensor<fp16, [128, 64, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(305920)))];
|
| 76 |
-
tensor<fp16, [128]> encoder_layers_6_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_6_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(355136)))];
|
| 77 |
-
tensor<fp16, [1, 128, 3]> input_15_cast_fp16 = conv(bias = encoder_layers_6_bias_to_fp16, dilations = input_15_dilations_0, groups = input_15_groups_0, pad = input_15_pad_0, pad_type = input_15_pad_type_0, strides = input_15_strides_0, weight = encoder_layers_6_weight_to_fp16, x = clip_2_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
|
| 78 |
-
tensor<fp16, [1, 128, 3]> x_9_cast_fp16 = relu(x = input_15_cast_fp16)[name = tensor<string, []>("x_9_cast_fp16")];
|
| 79 |
-
tensor<fp16, []> const_3_to_fp16 = const()[name = tensor<string, []>("const_3_to_fp16"), val = tensor<fp16, []>(-inf)];
|
| 80 |
-
tensor<fp16, [1, 128, 3]> clip_3_cast_fp16 = clip(alpha = const_3_to_fp16, beta = var_39_to_fp16, x = x_9_cast_fp16)[name = tensor<string, []>("clip_3_cast_fp16")];
|
| 81 |
-
tensor<int32, [3]> transpose_0_perm_0 = const()[name = tensor<string, []>("transpose_0_perm_0"), val = tensor<int32, [3]>([2, 0, 1])];
|
| 82 |
-
tensor<string, []> transpose_0_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("transpose_0_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 83 |
-
tensor<int32, [1]> hx_1_axes_0 = const()[name = tensor<string, []>("hx_1_axes_0"), val = tensor<int32, [1]>([0])];
|
| 84 |
-
tensor<string, []> hidden_state_to_fp16_dtype_0 = const()[name = tensor<string, []>("hidden_state_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 85 |
-
tensor<fp16, [1, 128]> hidden_state_to_fp16 = cast(dtype = hidden_state_to_fp16_dtype_0, x = hidden_state)[name = tensor<string, []>("cast_9")];
|
| 86 |
-
tensor<fp16, [1, 1, 128]> hx_1_cast_fp16 = expand_dims(axes = hx_1_axes_0, x = hidden_state_to_fp16)[name = tensor<string, []>("hx_1_cast_fp16")];
|
| 87 |
-
tensor<int32, [1]> hx_axes_0 = const()[name = tensor<string, []>("hx_axes_0"), val = tensor<int32, [1]>([0])];
|
| 88 |
-
tensor<string, []> cell_state_to_fp16_dtype_0 = const()[name = tensor<string, []>("cell_state_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 89 |
-
tensor<fp16, [1, 128]> cell_state_to_fp16 = cast(dtype = cell_state_to_fp16_dtype_0, x = cell_state)[name = tensor<string, []>("cast_8")];
|
| 90 |
-
tensor<fp16, [1, 1, 128]> hx_cast_fp16 = expand_dims(axes = hx_axes_0, x = cell_state_to_fp16)[name = tensor<string, []>("hx_cast_fp16")];
|
| 91 |
-
tensor<fp32, [512]> concat_0 = const()[name = tensor<string, []>("concat_0"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(355456)))];
|
| 92 |
-
tensor<fp32, [512, 128]> concat_1 = const()[name = tensor<string, []>("concat_1"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(357568)))];
|
| 93 |
-
tensor<fp32, [512, 128]> concat_2 = const()[name = tensor<string, []>("concat_2"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(619776)))];
|
| 94 |
-
tensor<int32, [1]> lstm_out_batch_first_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
| 95 |
-
tensor<fp16, [1, 128]> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16 = squeeze(axes = lstm_out_batch_first_lstm_h0_squeeze_axes_0, x = hx_1_cast_fp16)[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_cast_fp16")];
|
| 96 |
-
tensor<string, []> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 97 |
-
tensor<int32, [1]> lstm_out_batch_first_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
| 98 |
-
tensor<fp16, [1, 128]> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16 = squeeze(axes = lstm_out_batch_first_lstm_c0_squeeze_axes_0, x = hx_cast_fp16)[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_cast_fp16")];
|
| 99 |
-
tensor<string, []> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 100 |
-
tensor<string, []> lstm_out_batch_first_direction_0 = const()[name = tensor<string, []>("lstm_out_batch_first_direction_0"), val = tensor<string, []>("forward")];
|
| 101 |
-
tensor<bool, []> lstm_out_batch_first_output_sequence_0 = const()[name = tensor<string, []>("lstm_out_batch_first_output_sequence_0"), val = tensor<bool, []>(true)];
|
| 102 |
-
tensor<string, []> lstm_out_batch_first_recurrent_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
|
| 103 |
-
tensor<string, []> lstm_out_batch_first_cell_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_cell_activation_0"), val = tensor<string, []>("tanh")];
|
| 104 |
-
tensor<string, []> lstm_out_batch_first_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_activation_0"), val = tensor<string, []>("tanh")];
|
| 105 |
-
tensor<fp32, [1, 128]> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32 = cast(dtype = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0, x = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16)[name = tensor<string, []>("cast_6")];
|
| 106 |
-
tensor<fp32, [1, 128]> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32 = cast(dtype = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0, x = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16)[name = tensor<string, []>("cast_7")];
|
| 107 |
-
tensor<fp16, [3, 1, 128]> transpose_0_cast_fp16 = transpose(perm = transpose_0_perm_0, x = clip_3_cast_fp16)[name = tensor<string, []>("transpose_3")];
|
| 108 |
-
tensor<fp32, [3, 1, 128]> transpose_0_cast_fp16_to_fp32 = cast(dtype = transpose_0_cast_fp16_to_fp32_dtype_0, x = transpose_0_cast_fp16)[name = tensor<string, []>("cast_10")];
|
| 109 |
-
tensor<fp32, [3, 1, 128]> lstm_out_batch_first_0, tensor<fp32, [1, 128]> lstm_out_batch_first_1, tensor<fp32, [1, 128]> lstm_out_batch_first_2 = lstm(activation = lstm_out_batch_first_activation_0, bias = concat_0, cell_activation = lstm_out_batch_first_cell_activation_0, direction = lstm_out_batch_first_direction_0, initial_c = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32, initial_h = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32, output_sequence = lstm_out_batch_first_output_sequence_0, recurrent_activation = lstm_out_batch_first_recurrent_activation_0, weight_hh = concat_2, weight_ih = concat_1, x = transpose_0_cast_fp16_to_fp32)[name = tensor<string, []>("lstm_out_batch_first")];
|
| 110 |
-
tensor<int32, [3]> transpose_1_perm_0 = const()[name = tensor<string, []>("transpose_1_perm_0"), val = tensor<int32, [3]>([1, 2, 0])];
|
| 111 |
-
tensor<string, []> lstm_out_batch_first_0_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_0_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 112 |
-
tensor<int32, [1]> hn_axes_0 = const()[name = tensor<string, []>("hn_axes_0"), val = tensor<int32, [1]>([0])];
|
| 113 |
-
tensor<string, []> lstm_out_batch_first_1_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_1_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 114 |
-
tensor<fp16, [1, 128]> lstm_out_batch_first_1_to_fp16 = cast(dtype = lstm_out_batch_first_1_to_fp16_dtype_0, x = lstm_out_batch_first_1)[name = tensor<string, []>("cast_4")];
|
| 115 |
-
tensor<fp16, [1, 1, 128]> hn_cast_fp16 = expand_dims(axes = hn_axes_0, x = lstm_out_batch_first_1_to_fp16)[name = tensor<string, []>("hn_cast_fp16")];
|
| 116 |
-
tensor<int32, [1]> cn_axes_0 = const()[name = tensor<string, []>("cn_axes_0"), val = tensor<int32, [1]>([0])];
|
| 117 |
-
tensor<string, []> lstm_out_batch_first_2_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_2_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
| 118 |
-
tensor<fp16, [1, 128]> lstm_out_batch_first_2_to_fp16 = cast(dtype = lstm_out_batch_first_2_to_fp16_dtype_0, x = lstm_out_batch_first_2)[name = tensor<string, []>("cast_3")];
|
| 119 |
-
tensor<fp16, [1, 1, 128]> cn_cast_fp16 = expand_dims(axes = cn_axes_0, x = lstm_out_batch_first_2_to_fp16)[name = tensor<string, []>("cn_cast_fp16")];
|
| 120 |
-
tensor<string, []> input_pad_type_0 = const()[name = tensor<string, []>("input_pad_type_0"), val = tensor<string, []>("valid")];
|
| 121 |
-
tensor<int32, [1]> input_strides_0 = const()[name = tensor<string, []>("input_strides_0"), val = tensor<int32, [1]>([1])];
|
| 122 |
-
tensor<int32, [2]> input_pad_0 = const()[name = tensor<string, []>("input_pad_0"), val = tensor<int32, [2]>([0, 0])];
|
| 123 |
-
tensor<int32, [1]> input_dilations_0 = const()[name = tensor<string, []>("input_dilations_0"), val = tensor<int32, [1]>([1])];
|
| 124 |
-
tensor<int32, []> input_groups_0 = const()[name = tensor<string, []>("input_groups_0"), val = tensor<int32, []>(1)];
|
| 125 |
-
tensor<fp16, [1, 128, 1]> decoder_final_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_final_conv_weight_to_fp16"), val = tensor<fp16, [1, 128, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(881984)))];
|
| 126 |
-
tensor<fp16, [1]> decoder_final_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_final_conv_bias_to_fp16"), val = tensor<fp16, [1]>([0x1.dfp-5])];
|
| 127 |
-
tensor<fp16, [3, 1, 128]> lstm_out_batch_first_0_to_fp16 = cast(dtype = lstm_out_batch_first_0_to_fp16_dtype_0, x = lstm_out_batch_first_0)[name = tensor<string, []>("cast_5")];
|
| 128 |
-
tensor<fp16, [1, 128, 3]> transpose_1_cast_fp16 = transpose(perm = transpose_1_perm_0, x = lstm_out_batch_first_0_to_fp16)[name = tensor<string, []>("transpose_2")];
|
| 129 |
-
tensor<fp16, [1, 1, 3]> input_cast_fp16 = conv(bias = decoder_final_conv_bias_to_fp16, dilations = input_dilations_0, groups = input_groups_0, pad = input_pad_0, pad_type = input_pad_type_0, strides = input_strides_0, weight = decoder_final_conv_weight_to_fp16, x = transpose_1_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
| 130 |
-
tensor<fp16, [1, 1, 3]> out_cast_fp16 = sigmoid(x = input_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
| 131 |
-
tensor<int32, [1]> var_124_axes_0 = const()[name = tensor<string, []>("op_124_axes_0"), val = tensor<int32, [1]>([2])];
|
| 132 |
-
tensor<bool, []> var_124_keep_dims_0 = const()[name = tensor<string, []>("op_124_keep_dims_0"), val = tensor<bool, []>(true)];
|
| 133 |
-
tensor<fp16, [1, 1, 1]> var_124_cast_fp16 = reduce_mean(axes = var_124_axes_0, keep_dims = var_124_keep_dims_0, x = out_cast_fp16)[name = tensor<string, []>("op_124_cast_fp16")];
|
| 134 |
-
tensor<string, []> var_124_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_124_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 135 |
-
tensor<int32, [1]> var_125_axes_0 = const()[name = tensor<string, []>("op_125_axes_0"), val = tensor<int32, [1]>([0])];
|
| 136 |
-
tensor<fp16, [1, 128]> var_125_cast_fp16 = squeeze(axes = var_125_axes_0, x = hn_cast_fp16)[name = tensor<string, []>("op_125_cast_fp16")];
|
| 137 |
-
tensor<string, []> var_125_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_125_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 138 |
-
tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([0])];
|
| 139 |
-
tensor<fp16, [1, 128]> var_126_cast_fp16 = squeeze(axes = var_126_axes_0, x = cn_cast_fp16)[name = tensor<string, []>("op_126_cast_fp16")];
|
| 140 |
-
tensor<string, []> var_126_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_126_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
| 141 |
-
tensor<fp32, [1, 128]> new_cell_state = cast(dtype = var_126_cast_fp16_to_fp32_dtype_0, x = var_126_cast_fp16)[name = tensor<string, []>("cast_0")];
|
| 142 |
-
tensor<fp32, [1, 128]> new_hidden_state = cast(dtype = var_125_cast_fp16_to_fp32_dtype_0, x = var_125_cast_fp16)[name = tensor<string, []>("cast_1")];
|
| 143 |
-
tensor<fp32, [1, 1, 1]> vad_output = cast(dtype = var_124_cast_fp16_to_fp32_dtype_0, x = var_124_cast_fp16)[name = tensor<string, []>("cast_2")];
|
| 144 |
-
} -> (vad_output, new_hidden_state, new_cell_state);
|
| 145 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
silero-vad-unified-v6.0.0.mlmodelc/weights/weight.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:853cf34740d3f5061f977ebe2976f7c921b064261c9c4753b3a1196f2dba42b4
|
| 3 |
-
size 882304
|
|
|
|
|
|
|
|
|
|
|
|