bweng commited on
Commit
a645aff
·
verified ·
1 Parent(s): f64a000

Delete silero-vad-unified-v6.0.0.mlmodelc

Browse files
silero-vad-unified-v6.0.0.mlmodelc/analytics/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d622bd31042ab8fdd009a40a45c2cd8c9611927841bdd7bfc8ad40d16b6e3f7e
3
- size 243
 
 
 
 
silero-vad-unified-v6.0.0.mlmodelc/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:43933b65aab49a674b94a61e6af794f1fae327961a02160a0823dbfb174e91ce
3
- size 593
 
 
 
 
silero-vad-unified-v6.0.0.mlmodelc/metadata.json DELETED
@@ -1,118 +0,0 @@
1
- [
2
- {
3
- "shortDescription" : "Silero VAD Unified Model (STFT + Encoder + Decoder)",
4
- "metadataOutputVersion" : "3.0",
5
- "outputSchema" : [
6
- {
7
- "hasShapeFlexibility" : "0",
8
- "isOptional" : "0",
9
- "dataType" : "Float32",
10
- "formattedType" : "MultiArray (Float32 1 × 1 × 1)",
11
- "shortDescription" : "",
12
- "shape" : "[1, 1, 1]",
13
- "name" : "vad_output",
14
- "type" : "MultiArray"
15
- },
16
- {
17
- "hasShapeFlexibility" : "0",
18
- "isOptional" : "0",
19
- "dataType" : "Float32",
20
- "formattedType" : "MultiArray (Float32 1 × 128)",
21
- "shortDescription" : "",
22
- "shape" : "[1, 128]",
23
- "name" : "new_hidden_state",
24
- "type" : "MultiArray"
25
- },
26
- {
27
- "hasShapeFlexibility" : "0",
28
- "isOptional" : "0",
29
- "dataType" : "Float32",
30
- "formattedType" : "MultiArray (Float32 1 × 128)",
31
- "shortDescription" : "",
32
- "shape" : "[1, 128]",
33
- "name" : "new_cell_state",
34
- "type" : "MultiArray"
35
- }
36
- ],
37
- "version" : "6.0.0",
38
- "modelParameters" : [
39
-
40
- ],
41
- "author" : "Fluid Infernece + Silero Team",
42
- "specificationVersion" : 6,
43
- "storagePrecision" : "Mixed (Float16, Float32)",
44
- "mlProgramOperationTypeHistogram" : {
45
- "Log" : 1,
46
- "Lstm" : 1,
47
- "SliceByIndex" : 2,
48
- "Clip" : 4,
49
- "Transpose" : 2,
50
- "Pow" : 2,
51
- "Relu" : 4,
52
- "Squeeze" : 4,
53
- "Cast" : 12,
54
- "Sigmoid" : 1,
55
- "Add" : 3,
56
- "Sqrt" : 1,
57
- "ExpandDims" : 5,
58
- "ReduceMean" : 1,
59
- "Conv" : 6
60
- },
61
- "computePrecision" : "Mixed (Float16, Float32, Int32)",
62
- "stateSchema" : [
63
-
64
- ],
65
- "isUpdatable" : "0",
66
- "availability" : {
67
- "macOS" : "12.0",
68
- "tvOS" : "15.0",
69
- "visionOS" : "1.0",
70
- "watchOS" : "8.0",
71
- "iOS" : "15.0",
72
- "macCatalyst" : "15.0"
73
- },
74
- "modelType" : {
75
- "name" : "MLModelType_mlProgram"
76
- },
77
- "inputSchema" : [
78
- {
79
- "hasShapeFlexibility" : "0",
80
- "isOptional" : "0",
81
- "dataType" : "Float32",
82
- "formattedType" : "MultiArray (Float32 1 × 576)",
83
- "shortDescription" : "",
84
- "shape" : "[1, 576]",
85
- "name" : "audio_input",
86
- "type" : "MultiArray"
87
- },
88
- {
89
- "hasShapeFlexibility" : "0",
90
- "isOptional" : "0",
91
- "dataType" : "Float32",
92
- "formattedType" : "MultiArray (Float32 1 × 128)",
93
- "shortDescription" : "",
94
- "shape" : "[1, 128]",
95
- "name" : "hidden_state",
96
- "type" : "MultiArray"
97
- },
98
- {
99
- "hasShapeFlexibility" : "0",
100
- "isOptional" : "0",
101
- "dataType" : "Float32",
102
- "formattedType" : "MultiArray (Float32 1 × 128)",
103
- "shortDescription" : "",
104
- "shape" : "[1, 128]",
105
- "name" : "cell_state",
106
- "type" : "MultiArray"
107
- }
108
- ],
109
- "userDefinedMetadata" : {
110
- "com.github.apple.coremltools.conversion_date" : "2025-09-15",
111
- "com.github.apple.coremltools.source" : "torch==2.7.0",
112
- "com.github.apple.coremltools.version" : "9.0b1",
113
- "com.github.apple.coremltools.source_dialect" : "TorchScript"
114
- },
115
- "generatedClassName" : "silero_vad_unified_v6_0_0",
116
- "method" : "predict"
117
- }
118
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
silero-vad-unified-v6.0.0.mlmodelc/model.mil DELETED
@@ -1,145 +0,0 @@
1
- program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
- {
4
- func main<ios15>(tensor<fp32, [1, 576]> audio_input, tensor<fp32, [1, 128]> cell_state, tensor<fp32, [1, 128]> hidden_state) {
5
- tensor<int32, [1]> x_1_axes_0 = const()[name = tensor<string, []>("x_1_axes_0"), val = tensor<int32, [1]>([1])];
6
- tensor<string, []> audio_input_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_input_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
7
- tensor<fp16, [1, 576]> audio_input_to_fp16 = cast(dtype = audio_input_to_fp16_dtype_0, x = audio_input)[name = tensor<string, []>("cast_11")];
8
- tensor<fp16, [1, 1, 576]> x_1_cast_fp16 = expand_dims(axes = x_1_axes_0, x = audio_input_to_fp16)[name = tensor<string, []>("x_1_cast_fp16")];
9
- tensor<string, []> stft_out_pad_type_0 = const()[name = tensor<string, []>("stft_out_pad_type_0"), val = tensor<string, []>("custom")];
10
- tensor<int32, [2]> stft_out_pad_0 = const()[name = tensor<string, []>("stft_out_pad_0"), val = tensor<int32, [2]>([128, 128])];
11
- tensor<int32, [1]> stft_out_strides_0 = const()[name = tensor<string, []>("stft_out_strides_0"), val = tensor<int32, [1]>([256])];
12
- tensor<int32, [1]> stft_out_dilations_0 = const()[name = tensor<string, []>("stft_out_dilations_0"), val = tensor<int32, [1]>([1])];
13
- tensor<int32, []> stft_out_groups_0 = const()[name = tensor<string, []>("stft_out_groups_0"), val = tensor<int32, []>(1)];
14
- tensor<fp16, [258, 1, 256]> stft_forward_basis_to_fp16 = const()[name = tensor<string, []>("stft_forward_basis_to_fp16"), val = tensor<fp16, [258, 1, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
15
- tensor<fp16, [1, 258, 3]> stft_out_cast_fp16 = conv(dilations = stft_out_dilations_0, groups = stft_out_groups_0, pad = stft_out_pad_0, pad_type = stft_out_pad_type_0, strides = stft_out_strides_0, weight = stft_forward_basis_to_fp16, x = x_1_cast_fp16)[name = tensor<string, []>("stft_out_cast_fp16")];
16
- tensor<int32, [3]> var_25_begin_0 = const()[name = tensor<string, []>("op_25_begin_0"), val = tensor<int32, [3]>([0, 0, 0])];
17
- tensor<int32, [3]> var_25_end_0 = const()[name = tensor<string, []>("op_25_end_0"), val = tensor<int32, [3]>([1, 129, 3])];
18
- tensor<bool, [3]> var_25_end_mask_0 = const()[name = tensor<string, []>("op_25_end_mask_0"), val = tensor<bool, [3]>([true, false, true])];
19
- tensor<fp16, [1, 129, 3]> var_25_cast_fp16 = slice_by_index(begin = var_25_begin_0, end = var_25_end_0, end_mask = var_25_end_mask_0, x = stft_out_cast_fp16)[name = tensor<string, []>("op_25_cast_fp16")];
20
- tensor<int32, [3]> var_28_begin_0 = const()[name = tensor<string, []>("op_28_begin_0"), val = tensor<int32, [3]>([0, 129, 0])];
21
- tensor<int32, [3]> var_28_end_0 = const()[name = tensor<string, []>("op_28_end_0"), val = tensor<int32, [3]>([1, 258, 3])];
22
- tensor<bool, [3]> var_28_end_mask_0 = const()[name = tensor<string, []>("op_28_end_mask_0"), val = tensor<bool, [3]>([true, true, true])];
23
- tensor<fp16, [1, 129, 3]> var_28_cast_fp16 = slice_by_index(begin = var_28_begin_0, end = var_28_end_0, end_mask = var_28_end_mask_0, x = stft_out_cast_fp16)[name = tensor<string, []>("op_28_cast_fp16")];
24
- tensor<fp16, []> var_7_promoted_to_fp16 = const()[name = tensor<string, []>("op_7_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
25
- tensor<fp16, [1, 129, 3]> var_30_cast_fp16 = pow(x = var_25_cast_fp16, y = var_7_promoted_to_fp16)[name = tensor<string, []>("op_30_cast_fp16")];
26
- tensor<fp16, []> var_7_promoted_1_to_fp16 = const()[name = tensor<string, []>("op_7_promoted_1_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
27
- tensor<fp16, [1, 129, 3]> var_31_cast_fp16 = pow(x = var_28_cast_fp16, y = var_7_promoted_1_to_fp16)[name = tensor<string, []>("op_31_cast_fp16")];
28
- tensor<fp16, [1, 129, 3]> var_32_cast_fp16 = add(x = var_30_cast_fp16, y = var_31_cast_fp16)[name = tensor<string, []>("op_32_cast_fp16")];
29
- tensor<fp16, []> var_33_to_fp16 = const()[name = tensor<string, []>("op_33_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
30
- tensor<fp16, [1, 129, 3]> var_34_cast_fp16 = add(x = var_32_cast_fp16, y = var_33_to_fp16)[name = tensor<string, []>("op_34_cast_fp16")];
31
- tensor<fp16, [1, 129, 3]> magnitude_cast_fp16 = sqrt(x = var_34_cast_fp16)[name = tensor<string, []>("magnitude_cast_fp16")];
32
- tensor<fp16, []> var_36_to_fp16 = const()[name = tensor<string, []>("op_36_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
33
- tensor<fp16, [1, 129, 3]> var_37_cast_fp16 = add(x = magnitude_cast_fp16, y = var_36_to_fp16)[name = tensor<string, []>("op_37_cast_fp16")];
34
- tensor<fp16, []> input_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
35
- tensor<fp16, [1, 129, 3]> input_1_cast_fp16 = log(epsilon = input_1_epsilon_0_to_fp16, x = var_37_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
36
- tensor<string, []> input_3_pad_type_0 = const()[name = tensor<string, []>("input_3_pad_type_0"), val = tensor<string, []>("custom")];
37
- tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([1, 1])];
38
- tensor<int32, [1]> input_3_strides_0 = const()[name = tensor<string, []>("input_3_strides_0"), val = tensor<int32, [1]>([1])];
39
- tensor<int32, [1]> input_3_dilations_0 = const()[name = tensor<string, []>("input_3_dilations_0"), val = tensor<int32, [1]>([1])];
40
- tensor<int32, []> input_3_groups_0 = const()[name = tensor<string, []>("input_3_groups_0"), val = tensor<int32, []>(1)];
41
- tensor<fp16, [128, 129, 3]> encoder_layers_0_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_0_weight_to_fp16"), val = tensor<fp16, [128, 129, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132224)))];
42
- tensor<fp16, [128]> encoder_layers_0_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_0_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(231360)))];
43
- tensor<fp16, [1, 128, 3]> input_3_cast_fp16 = conv(bias = encoder_layers_0_bias_to_fp16, dilations = input_3_dilations_0, groups = input_3_groups_0, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = input_3_strides_0, weight = encoder_layers_0_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
44
- tensor<fp16, [1, 128, 3]> x_3_cast_fp16 = relu(x = input_3_cast_fp16)[name = tensor<string, []>("x_3_cast_fp16")];
45
- tensor<fp16, []> const_0_to_fp16 = const()[name = tensor<string, []>("const_0_to_fp16"), val = tensor<fp16, []>(-inf)];
46
- tensor<fp16, []> var_39_to_fp16 = const()[name = tensor<string, []>("op_39_to_fp16"), val = tensor<fp16, []>(0x1.388p+13)];
47
- tensor<fp16, [1, 128, 3]> clip_0_cast_fp16 = clip(alpha = const_0_to_fp16, beta = var_39_to_fp16, x = x_3_cast_fp16)[name = tensor<string, []>("clip_0_cast_fp16")];
48
- tensor<string, []> input_7_pad_type_0 = const()[name = tensor<string, []>("input_7_pad_type_0"), val = tensor<string, []>("custom")];
49
- tensor<int32, [2]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [2]>([1, 1])];
50
- tensor<int32, [1]> input_7_strides_0 = const()[name = tensor<string, []>("input_7_strides_0"), val = tensor<int32, [1]>([1])];
51
- tensor<int32, [1]> input_7_dilations_0 = const()[name = tensor<string, []>("input_7_dilations_0"), val = tensor<int32, [1]>([1])];
52
- tensor<int32, []> input_7_groups_0 = const()[name = tensor<string, []>("input_7_groups_0"), val = tensor<int32, []>(1)];
53
- tensor<fp16, [64, 128, 3]> encoder_layers_2_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_2_weight_to_fp16"), val = tensor<fp16, [64, 128, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(231680)))];
54
- tensor<fp16, [64]> encoder_layers_2_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_2_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(280896)))];
55
- tensor<fp16, [1, 64, 3]> input_7_cast_fp16 = conv(bias = encoder_layers_2_bias_to_fp16, dilations = input_7_dilations_0, groups = input_7_groups_0, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = input_7_strides_0, weight = encoder_layers_2_weight_to_fp16, x = clip_0_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
56
- tensor<fp16, [1, 64, 3]> x_5_cast_fp16 = relu(x = input_7_cast_fp16)[name = tensor<string, []>("x_5_cast_fp16")];
57
- tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(-inf)];
58
- tensor<fp16, [1, 64, 3]> clip_1_cast_fp16 = clip(alpha = const_1_to_fp16, beta = var_39_to_fp16, x = x_5_cast_fp16)[name = tensor<string, []>("clip_1_cast_fp16")];
59
- tensor<string, []> input_11_pad_type_0 = const()[name = tensor<string, []>("input_11_pad_type_0"), val = tensor<string, []>("custom")];
60
- tensor<int32, [2]> input_11_pad_0 = const()[name = tensor<string, []>("input_11_pad_0"), val = tensor<int32, [2]>([1, 1])];
61
- tensor<int32, [1]> input_11_strides_0 = const()[name = tensor<string, []>("input_11_strides_0"), val = tensor<int32, [1]>([1])];
62
- tensor<int32, [1]> input_11_dilations_0 = const()[name = tensor<string, []>("input_11_dilations_0"), val = tensor<int32, [1]>([1])];
63
- tensor<int32, []> input_11_groups_0 = const()[name = tensor<string, []>("input_11_groups_0"), val = tensor<int32, []>(1)];
64
- tensor<fp16, [64, 64, 3]> encoder_layers_4_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_4_weight_to_fp16"), val = tensor<fp16, [64, 64, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(281088)))];
65
- tensor<fp16, [64]> encoder_layers_4_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_4_bias_to_fp16"), val = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(305728)))];
66
- tensor<fp16, [1, 64, 3]> input_11_cast_fp16 = conv(bias = encoder_layers_4_bias_to_fp16, dilations = input_11_dilations_0, groups = input_11_groups_0, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = input_11_strides_0, weight = encoder_layers_4_weight_to_fp16, x = clip_1_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
67
- tensor<fp16, [1, 64, 3]> x_7_cast_fp16 = relu(x = input_11_cast_fp16)[name = tensor<string, []>("x_7_cast_fp16")];
68
- tensor<fp16, []> const_2_to_fp16 = const()[name = tensor<string, []>("const_2_to_fp16"), val = tensor<fp16, []>(-inf)];
69
- tensor<fp16, [1, 64, 3]> clip_2_cast_fp16 = clip(alpha = const_2_to_fp16, beta = var_39_to_fp16, x = x_7_cast_fp16)[name = tensor<string, []>("clip_2_cast_fp16")];
70
- tensor<string, []> input_15_pad_type_0 = const()[name = tensor<string, []>("input_15_pad_type_0"), val = tensor<string, []>("custom")];
71
- tensor<int32, [2]> input_15_pad_0 = const()[name = tensor<string, []>("input_15_pad_0"), val = tensor<int32, [2]>([1, 1])];
72
- tensor<int32, [1]> input_15_strides_0 = const()[name = tensor<string, []>("input_15_strides_0"), val = tensor<int32, [1]>([1])];
73
- tensor<int32, [1]> input_15_dilations_0 = const()[name = tensor<string, []>("input_15_dilations_0"), val = tensor<int32, [1]>([1])];
74
- tensor<int32, []> input_15_groups_0 = const()[name = tensor<string, []>("input_15_groups_0"), val = tensor<int32, []>(1)];
75
- tensor<fp16, [128, 64, 3]> encoder_layers_6_weight_to_fp16 = const()[name = tensor<string, []>("encoder_layers_6_weight_to_fp16"), val = tensor<fp16, [128, 64, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(305920)))];
76
- tensor<fp16, [128]> encoder_layers_6_bias_to_fp16 = const()[name = tensor<string, []>("encoder_layers_6_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(355136)))];
77
- tensor<fp16, [1, 128, 3]> input_15_cast_fp16 = conv(bias = encoder_layers_6_bias_to_fp16, dilations = input_15_dilations_0, groups = input_15_groups_0, pad = input_15_pad_0, pad_type = input_15_pad_type_0, strides = input_15_strides_0, weight = encoder_layers_6_weight_to_fp16, x = clip_2_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
78
- tensor<fp16, [1, 128, 3]> x_9_cast_fp16 = relu(x = input_15_cast_fp16)[name = tensor<string, []>("x_9_cast_fp16")];
79
- tensor<fp16, []> const_3_to_fp16 = const()[name = tensor<string, []>("const_3_to_fp16"), val = tensor<fp16, []>(-inf)];
80
- tensor<fp16, [1, 128, 3]> clip_3_cast_fp16 = clip(alpha = const_3_to_fp16, beta = var_39_to_fp16, x = x_9_cast_fp16)[name = tensor<string, []>("clip_3_cast_fp16")];
81
- tensor<int32, [3]> transpose_0_perm_0 = const()[name = tensor<string, []>("transpose_0_perm_0"), val = tensor<int32, [3]>([2, 0, 1])];
82
- tensor<string, []> transpose_0_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("transpose_0_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
83
- tensor<int32, [1]> hx_1_axes_0 = const()[name = tensor<string, []>("hx_1_axes_0"), val = tensor<int32, [1]>([0])];
84
- tensor<string, []> hidden_state_to_fp16_dtype_0 = const()[name = tensor<string, []>("hidden_state_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
85
- tensor<fp16, [1, 128]> hidden_state_to_fp16 = cast(dtype = hidden_state_to_fp16_dtype_0, x = hidden_state)[name = tensor<string, []>("cast_9")];
86
- tensor<fp16, [1, 1, 128]> hx_1_cast_fp16 = expand_dims(axes = hx_1_axes_0, x = hidden_state_to_fp16)[name = tensor<string, []>("hx_1_cast_fp16")];
87
- tensor<int32, [1]> hx_axes_0 = const()[name = tensor<string, []>("hx_axes_0"), val = tensor<int32, [1]>([0])];
88
- tensor<string, []> cell_state_to_fp16_dtype_0 = const()[name = tensor<string, []>("cell_state_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
89
- tensor<fp16, [1, 128]> cell_state_to_fp16 = cast(dtype = cell_state_to_fp16_dtype_0, x = cell_state)[name = tensor<string, []>("cast_8")];
90
- tensor<fp16, [1, 1, 128]> hx_cast_fp16 = expand_dims(axes = hx_axes_0, x = cell_state_to_fp16)[name = tensor<string, []>("hx_cast_fp16")];
91
- tensor<fp32, [512]> concat_0 = const()[name = tensor<string, []>("concat_0"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(355456)))];
92
- tensor<fp32, [512, 128]> concat_1 = const()[name = tensor<string, []>("concat_1"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(357568)))];
93
- tensor<fp32, [512, 128]> concat_2 = const()[name = tensor<string, []>("concat_2"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(619776)))];
94
- tensor<int32, [1]> lstm_out_batch_first_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
95
- tensor<fp16, [1, 128]> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16 = squeeze(axes = lstm_out_batch_first_lstm_h0_squeeze_axes_0, x = hx_1_cast_fp16)[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_cast_fp16")];
96
- tensor<string, []> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
97
- tensor<int32, [1]> lstm_out_batch_first_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
98
- tensor<fp16, [1, 128]> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16 = squeeze(axes = lstm_out_batch_first_lstm_c0_squeeze_axes_0, x = hx_cast_fp16)[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_cast_fp16")];
99
- tensor<string, []> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
100
- tensor<string, []> lstm_out_batch_first_direction_0 = const()[name = tensor<string, []>("lstm_out_batch_first_direction_0"), val = tensor<string, []>("forward")];
101
- tensor<bool, []> lstm_out_batch_first_output_sequence_0 = const()[name = tensor<string, []>("lstm_out_batch_first_output_sequence_0"), val = tensor<bool, []>(true)];
102
- tensor<string, []> lstm_out_batch_first_recurrent_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
103
- tensor<string, []> lstm_out_batch_first_cell_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_cell_activation_0"), val = tensor<string, []>("tanh")];
104
- tensor<string, []> lstm_out_batch_first_activation_0 = const()[name = tensor<string, []>("lstm_out_batch_first_activation_0"), val = tensor<string, []>("tanh")];
105
- tensor<fp32, [1, 128]> lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32 = cast(dtype = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0, x = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16)[name = tensor<string, []>("cast_6")];
106
- tensor<fp32, [1, 128]> lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32 = cast(dtype = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0, x = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16)[name = tensor<string, []>("cast_7")];
107
- tensor<fp16, [3, 1, 128]> transpose_0_cast_fp16 = transpose(perm = transpose_0_perm_0, x = clip_3_cast_fp16)[name = tensor<string, []>("transpose_3")];
108
- tensor<fp32, [3, 1, 128]> transpose_0_cast_fp16_to_fp32 = cast(dtype = transpose_0_cast_fp16_to_fp32_dtype_0, x = transpose_0_cast_fp16)[name = tensor<string, []>("cast_10")];
109
- tensor<fp32, [3, 1, 128]> lstm_out_batch_first_0, tensor<fp32, [1, 128]> lstm_out_batch_first_1, tensor<fp32, [1, 128]> lstm_out_batch_first_2 = lstm(activation = lstm_out_batch_first_activation_0, bias = concat_0, cell_activation = lstm_out_batch_first_cell_activation_0, direction = lstm_out_batch_first_direction_0, initial_c = lstm_out_batch_first_lstm_c0_squeeze_cast_fp16_to_fp32, initial_h = lstm_out_batch_first_lstm_h0_squeeze_cast_fp16_to_fp32, output_sequence = lstm_out_batch_first_output_sequence_0, recurrent_activation = lstm_out_batch_first_recurrent_activation_0, weight_hh = concat_2, weight_ih = concat_1, x = transpose_0_cast_fp16_to_fp32)[name = tensor<string, []>("lstm_out_batch_first")];
110
- tensor<int32, [3]> transpose_1_perm_0 = const()[name = tensor<string, []>("transpose_1_perm_0"), val = tensor<int32, [3]>([1, 2, 0])];
111
- tensor<string, []> lstm_out_batch_first_0_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_0_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
112
- tensor<int32, [1]> hn_axes_0 = const()[name = tensor<string, []>("hn_axes_0"), val = tensor<int32, [1]>([0])];
113
- tensor<string, []> lstm_out_batch_first_1_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_1_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
114
- tensor<fp16, [1, 128]> lstm_out_batch_first_1_to_fp16 = cast(dtype = lstm_out_batch_first_1_to_fp16_dtype_0, x = lstm_out_batch_first_1)[name = tensor<string, []>("cast_4")];
115
- tensor<fp16, [1, 1, 128]> hn_cast_fp16 = expand_dims(axes = hn_axes_0, x = lstm_out_batch_first_1_to_fp16)[name = tensor<string, []>("hn_cast_fp16")];
116
- tensor<int32, [1]> cn_axes_0 = const()[name = tensor<string, []>("cn_axes_0"), val = tensor<int32, [1]>([0])];
117
- tensor<string, []> lstm_out_batch_first_2_to_fp16_dtype_0 = const()[name = tensor<string, []>("lstm_out_batch_first_2_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
118
- tensor<fp16, [1, 128]> lstm_out_batch_first_2_to_fp16 = cast(dtype = lstm_out_batch_first_2_to_fp16_dtype_0, x = lstm_out_batch_first_2)[name = tensor<string, []>("cast_3")];
119
- tensor<fp16, [1, 1, 128]> cn_cast_fp16 = expand_dims(axes = cn_axes_0, x = lstm_out_batch_first_2_to_fp16)[name = tensor<string, []>("cn_cast_fp16")];
120
- tensor<string, []> input_pad_type_0 = const()[name = tensor<string, []>("input_pad_type_0"), val = tensor<string, []>("valid")];
121
- tensor<int32, [1]> input_strides_0 = const()[name = tensor<string, []>("input_strides_0"), val = tensor<int32, [1]>([1])];
122
- tensor<int32, [2]> input_pad_0 = const()[name = tensor<string, []>("input_pad_0"), val = tensor<int32, [2]>([0, 0])];
123
- tensor<int32, [1]> input_dilations_0 = const()[name = tensor<string, []>("input_dilations_0"), val = tensor<int32, [1]>([1])];
124
- tensor<int32, []> input_groups_0 = const()[name = tensor<string, []>("input_groups_0"), val = tensor<int32, []>(1)];
125
- tensor<fp16, [1, 128, 1]> decoder_final_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_final_conv_weight_to_fp16"), val = tensor<fp16, [1, 128, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(881984)))];
126
- tensor<fp16, [1]> decoder_final_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_final_conv_bias_to_fp16"), val = tensor<fp16, [1]>([0x1.dfp-5])];
127
- tensor<fp16, [3, 1, 128]> lstm_out_batch_first_0_to_fp16 = cast(dtype = lstm_out_batch_first_0_to_fp16_dtype_0, x = lstm_out_batch_first_0)[name = tensor<string, []>("cast_5")];
128
- tensor<fp16, [1, 128, 3]> transpose_1_cast_fp16 = transpose(perm = transpose_1_perm_0, x = lstm_out_batch_first_0_to_fp16)[name = tensor<string, []>("transpose_2")];
129
- tensor<fp16, [1, 1, 3]> input_cast_fp16 = conv(bias = decoder_final_conv_bias_to_fp16, dilations = input_dilations_0, groups = input_groups_0, pad = input_pad_0, pad_type = input_pad_type_0, strides = input_strides_0, weight = decoder_final_conv_weight_to_fp16, x = transpose_1_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
130
- tensor<fp16, [1, 1, 3]> out_cast_fp16 = sigmoid(x = input_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
131
- tensor<int32, [1]> var_124_axes_0 = const()[name = tensor<string, []>("op_124_axes_0"), val = tensor<int32, [1]>([2])];
132
- tensor<bool, []> var_124_keep_dims_0 = const()[name = tensor<string, []>("op_124_keep_dims_0"), val = tensor<bool, []>(true)];
133
- tensor<fp16, [1, 1, 1]> var_124_cast_fp16 = reduce_mean(axes = var_124_axes_0, keep_dims = var_124_keep_dims_0, x = out_cast_fp16)[name = tensor<string, []>("op_124_cast_fp16")];
134
- tensor<string, []> var_124_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_124_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
135
- tensor<int32, [1]> var_125_axes_0 = const()[name = tensor<string, []>("op_125_axes_0"), val = tensor<int32, [1]>([0])];
136
- tensor<fp16, [1, 128]> var_125_cast_fp16 = squeeze(axes = var_125_axes_0, x = hn_cast_fp16)[name = tensor<string, []>("op_125_cast_fp16")];
137
- tensor<string, []> var_125_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_125_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
138
- tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([0])];
139
- tensor<fp16, [1, 128]> var_126_cast_fp16 = squeeze(axes = var_126_axes_0, x = cn_cast_fp16)[name = tensor<string, []>("op_126_cast_fp16")];
140
- tensor<string, []> var_126_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_126_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
141
- tensor<fp32, [1, 128]> new_cell_state = cast(dtype = var_126_cast_fp16_to_fp32_dtype_0, x = var_126_cast_fp16)[name = tensor<string, []>("cast_0")];
142
- tensor<fp32, [1, 128]> new_hidden_state = cast(dtype = var_125_cast_fp16_to_fp32_dtype_0, x = var_125_cast_fp16)[name = tensor<string, []>("cast_1")];
143
- tensor<fp32, [1, 1, 1]> vad_output = cast(dtype = var_124_cast_fp16_to_fp32_dtype_0, x = var_124_cast_fp16)[name = tensor<string, []>("cast_2")];
144
- } -> (vad_output, new_hidden_state, new_cell_state);
145
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
silero-vad-unified-v6.0.0.mlmodelc/weights/weight.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:853cf34740d3f5061f977ebe2976f7c921b064261c9c4753b3a1196f2dba42b4
3
- size 882304