Create api_server.py (#3)
Browse files- Create api_server.py (136442a13de21d2d3c41fa035af16f4ed45332dd)
Co-authored-by: Alex Gall <[email protected]>
- api_server.py +419 -0
api_server.py
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Helion-OSC API Server
|
| 3 |
+
FastAPI-based REST API for serving Helion-OSC model
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from fastapi.responses import StreamingResponse
|
| 9 |
+
from pydantic import BaseModel, Field
|
| 10 |
+
from typing import Optional, List, Dict, Any, AsyncGenerator
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 13 |
+
from threading import Thread
|
| 14 |
+
import uvicorn
|
| 15 |
+
import logging
|
| 16 |
+
import time
|
| 17 |
+
import json
|
| 18 |
+
from queue import Queue
|
| 19 |
+
import asyncio
|
| 20 |
+
|
| 21 |
+
logging.basicConfig(level=logging.INFO)
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
# Initialize FastAPI app
|
| 25 |
+
app = FastAPI(
|
| 26 |
+
title="Helion-OSC API",
|
| 27 |
+
description="REST API for Helion-OSC Code Generation Model",
|
| 28 |
+
version="1.0.0"
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Add CORS middleware
|
| 32 |
+
app.add_middleware(
|
| 33 |
+
CORSMiddleware,
|
| 34 |
+
allow_origins=["*"],
|
| 35 |
+
allow_credentials=True,
|
| 36 |
+
allow_methods=["*"],
|
| 37 |
+
allow_headers=["*"],
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Global model variables
|
| 41 |
+
model = None
|
| 42 |
+
tokenizer = None
|
| 43 |
+
device = None
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class GenerationRequest(BaseModel):
|
| 47 |
+
"""Request model for text generation"""
|
| 48 |
+
prompt: str = Field(..., description="Input prompt for generation")
|
| 49 |
+
max_length: int = Field(2048, ge=1, le=16384, description="Maximum length of generation")
|
| 50 |
+
temperature: float = Field(0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
| 51 |
+
top_p: float = Field(0.95, ge=0.0, le=1.0, description="Nucleus sampling parameter")
|
| 52 |
+
top_k: int = Field(50, ge=0, le=200, description="Top-k sampling parameter")
|
| 53 |
+
repetition_penalty: float = Field(1.05, ge=1.0, le=2.0, description="Repetition penalty")
|
| 54 |
+
do_sample: bool = Field(True, description="Whether to use sampling")
|
| 55 |
+
num_return_sequences: int = Field(1, ge=1, le=10, description="Number of sequences to generate")
|
| 56 |
+
stop_sequences: Optional[List[str]] = Field(None, description="Stop generation at these sequences")
|
| 57 |
+
stream: bool = Field(False, description="Stream the response")
|
| 58 |
+
task_type: Optional[str] = Field("code_generation", description="Task type for optimized parameters")
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class GenerationResponse(BaseModel):
|
| 62 |
+
"""Response model for text generation"""
|
| 63 |
+
generated_text: str
|
| 64 |
+
prompt: str
|
| 65 |
+
model: str
|
| 66 |
+
generation_time: float
|
| 67 |
+
tokens_generated: int
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class ModelInfo(BaseModel):
|
| 71 |
+
"""Model information"""
|
| 72 |
+
model_name: str
|
| 73 |
+
model_type: str
|
| 74 |
+
vocabulary_size: int
|
| 75 |
+
hidden_size: int
|
| 76 |
+
num_layers: int
|
| 77 |
+
device: str
|
| 78 |
+
dtype: str
|
| 79 |
+
max_position_embeddings: int
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class HealthResponse(BaseModel):
|
| 83 |
+
"""Health check response"""
|
| 84 |
+
status: str
|
| 85 |
+
model_loaded: bool
|
| 86 |
+
device: str
|
| 87 |
+
timestamp: float
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
@app.on_event("startup")
|
| 91 |
+
async def load_model():
|
| 92 |
+
"""Load model on startup"""
|
| 93 |
+
global model, tokenizer, device
|
| 94 |
+
|
| 95 |
+
logger.info("Loading Helion-OSC model...")
|
| 96 |
+
|
| 97 |
+
model_name = "DeepXR/Helion-OSC"
|
| 98 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
# Load tokenizer
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 103 |
+
model_name,
|
| 104 |
+
trust_remote_code=True
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if tokenizer.pad_token is None:
|
| 108 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 109 |
+
|
| 110 |
+
# Load model
|
| 111 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 112 |
+
model_name,
|
| 113 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
|
| 114 |
+
device_map="auto" if device == "cuda" else None,
|
| 115 |
+
trust_remote_code=True,
|
| 116 |
+
low_cpu_mem_usage=True
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
if device == "cpu":
|
| 120 |
+
model = model.to(device)
|
| 121 |
+
|
| 122 |
+
model.eval()
|
| 123 |
+
|
| 124 |
+
logger.info(f"Model loaded successfully on {device}")
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
logger.error(f"Failed to load model: {e}")
|
| 128 |
+
raise
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@app.get("/", response_model=Dict[str, str])
|
| 132 |
+
async def root():
|
| 133 |
+
"""Root endpoint"""
|
| 134 |
+
return {
|
| 135 |
+
"message": "Helion-OSC API Server",
|
| 136 |
+
"version": "1.0.0",
|
| 137 |
+
"documentation": "/docs"
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
@app.get("/health", response_model=HealthResponse)
|
| 142 |
+
async def health_check():
|
| 143 |
+
"""Health check endpoint"""
|
| 144 |
+
return HealthResponse(
|
| 145 |
+
status="healthy" if model is not None else "unhealthy",
|
| 146 |
+
model_loaded=model is not None,
|
| 147 |
+
device=device,
|
| 148 |
+
timestamp=time.time()
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
@app.get("/info", response_model=ModelInfo)
|
| 153 |
+
async def model_info():
|
| 154 |
+
"""Get model information"""
|
| 155 |
+
if model is None:
|
| 156 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 157 |
+
|
| 158 |
+
config = model.config
|
| 159 |
+
|
| 160 |
+
return ModelInfo(
|
| 161 |
+
model_name="DeepXR/Helion-OSC",
|
| 162 |
+
model_type=config.model_type,
|
| 163 |
+
vocabulary_size=config.vocab_size,
|
| 164 |
+
hidden_size=config.hidden_size,
|
| 165 |
+
num_layers=config.num_hidden_layers,
|
| 166 |
+
device=device,
|
| 167 |
+
dtype=str(next(model.parameters()).dtype),
|
| 168 |
+
max_position_embeddings=config.max_position_embeddings
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
@app.post("/generate", response_model=GenerationResponse)
|
| 173 |
+
async def generate(request: GenerationRequest):
|
| 174 |
+
"""Generate text based on prompt"""
|
| 175 |
+
if model is None or tokenizer is None:
|
| 176 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 177 |
+
|
| 178 |
+
if request.stream:
|
| 179 |
+
raise HTTPException(
|
| 180 |
+
status_code=400,
|
| 181 |
+
detail="Use /generate/stream endpoint for streaming responses"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
start_time = time.time()
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
# Tokenize input
|
| 188 |
+
inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
|
| 189 |
+
input_length = inputs.input_ids.shape[1]
|
| 190 |
+
|
| 191 |
+
# Generate
|
| 192 |
+
with torch.no_grad():
|
| 193 |
+
outputs = model.generate(
|
| 194 |
+
**inputs,
|
| 195 |
+
max_length=request.max_length,
|
| 196 |
+
temperature=request.temperature,
|
| 197 |
+
top_p=request.top_p,
|
| 198 |
+
top_k=request.top_k,
|
| 199 |
+
repetition_penalty=request.repetition_penalty,
|
| 200 |
+
do_sample=request.do_sample,
|
| 201 |
+
num_return_sequences=request.num_return_sequences,
|
| 202 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 203 |
+
eos_token_id=tokenizer.eos_token_id
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# Decode output
|
| 207 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 208 |
+
|
| 209 |
+
# Remove prompt from output
|
| 210 |
+
generated_text = generated_text[len(request.prompt):].strip()
|
| 211 |
+
|
| 212 |
+
generation_time = time.time() - start_time
|
| 213 |
+
tokens_generated = outputs.shape[1] - input_length
|
| 214 |
+
|
| 215 |
+
return GenerationResponse(
|
| 216 |
+
generated_text=generated_text,
|
| 217 |
+
prompt=request.prompt,
|
| 218 |
+
model="DeepXR/Helion-OSC",
|
| 219 |
+
generation_time=generation_time,
|
| 220 |
+
tokens_generated=tokens_generated
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
except Exception as e:
|
| 224 |
+
logger.error(f"Generation error: {e}")
|
| 225 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
@app.post("/generate/stream")
|
| 229 |
+
async def generate_stream(request: GenerationRequest):
|
| 230 |
+
"""Generate text with streaming response"""
|
| 231 |
+
if model is None or tokenizer is None:
|
| 232 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 233 |
+
|
| 234 |
+
async def stream_generator() -> AsyncGenerator[str, None]:
|
| 235 |
+
try:
|
| 236 |
+
# Tokenize input
|
| 237 |
+
inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
|
| 238 |
+
|
| 239 |
+
# Setup streamer
|
| 240 |
+
streamer = TextIteratorStreamer(
|
| 241 |
+
tokenizer,
|
| 242 |
+
skip_prompt=True,
|
| 243 |
+
skip_special_tokens=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Generation kwargs
|
| 247 |
+
generation_kwargs = {
|
| 248 |
+
**inputs,
|
| 249 |
+
"max_length": request.max_length,
|
| 250 |
+
"temperature": request.temperature,
|
| 251 |
+
"top_p": request.top_p,
|
| 252 |
+
"top_k": request.top_k,
|
| 253 |
+
"repetition_penalty": request.repetition_penalty,
|
| 254 |
+
"do_sample": request.do_sample,
|
| 255 |
+
"pad_token_id": tokenizer.pad_token_id,
|
| 256 |
+
"eos_token_id": tokenizer.eos_token_id,
|
| 257 |
+
"streamer": streamer
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
# Start generation in separate thread
|
| 261 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 262 |
+
thread.start()
|
| 263 |
+
|
| 264 |
+
# Stream tokens
|
| 265 |
+
for text in streamer:
|
| 266 |
+
yield f"data: {json.dumps({'text': text})}\n\n"
|
| 267 |
+
await asyncio.sleep(0) # Allow other tasks to run
|
| 268 |
+
|
| 269 |
+
yield f"data: {json.dumps({'done': True})}\n\n"
|
| 270 |
+
|
| 271 |
+
except Exception as e:
|
| 272 |
+
logger.error(f"Streaming error: {e}")
|
| 273 |
+
yield f"data: {json.dumps({'error': str(e)})}\n\n"
|
| 274 |
+
|
| 275 |
+
return StreamingResponse(
|
| 276 |
+
stream_generator(),
|
| 277 |
+
media_type="text/event-stream"
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
@app.post("/code/complete")
|
| 282 |
+
async def code_complete(
|
| 283 |
+
code: str,
|
| 284 |
+
language: Optional[str] = "python",
|
| 285 |
+
max_length: int = 1024
|
| 286 |
+
):
|
| 287 |
+
"""Code completion endpoint"""
|
| 288 |
+
if model is None or tokenizer is None:
|
| 289 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 290 |
+
|
| 291 |
+
request = GenerationRequest(
|
| 292 |
+
prompt=code,
|
| 293 |
+
max_length=max_length,
|
| 294 |
+
temperature=0.6,
|
| 295 |
+
top_p=0.92,
|
| 296 |
+
do_sample=True,
|
| 297 |
+
task_type="code_completion"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
return await generate(request)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
@app.post("/code/explain")
|
| 304 |
+
async def code_explain(code: str, language: Optional[str] = "python"):
|
| 305 |
+
"""Code explanation endpoint"""
|
| 306 |
+
if model is None or tokenizer is None:
|
| 307 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 308 |
+
|
| 309 |
+
prompt = f"Explain the following {language} code in detail:\n\n```{language}\n{code}\n```\n\nExplanation:"
|
| 310 |
+
|
| 311 |
+
request = GenerationRequest(
|
| 312 |
+
prompt=prompt,
|
| 313 |
+
max_length=2048,
|
| 314 |
+
temperature=0.6,
|
| 315 |
+
top_p=0.9,
|
| 316 |
+
do_sample=True,
|
| 317 |
+
task_type="code_explanation"
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
return await generate(request)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
@app.post("/code/debug")
|
| 324 |
+
async def code_debug(
|
| 325 |
+
code: str,
|
| 326 |
+
error_message: Optional[str] = None,
|
| 327 |
+
language: Optional[str] = "python"
|
| 328 |
+
):
|
| 329 |
+
"""Code debugging endpoint"""
|
| 330 |
+
if model is None or tokenizer is None:
|
| 331 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 332 |
+
|
| 333 |
+
prompt = f"Debug the following {language} code:\n\n```{language}\n{code}\n```"
|
| 334 |
+
if error_message:
|
| 335 |
+
prompt += f"\n\nError message: {error_message}"
|
| 336 |
+
prompt += "\n\nProvide a detailed analysis and fixed code:"
|
| 337 |
+
|
| 338 |
+
request = GenerationRequest(
|
| 339 |
+
prompt=prompt,
|
| 340 |
+
max_length=2048,
|
| 341 |
+
temperature=0.4,
|
| 342 |
+
top_p=0.88,
|
| 343 |
+
do_sample=False,
|
| 344 |
+
task_type="debugging"
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
return await generate(request)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
@app.post("/math/solve")
|
| 351 |
+
async def math_solve(problem: str):
|
| 352 |
+
"""Mathematical problem solving endpoint"""
|
| 353 |
+
if model is None or tokenizer is None:
|
| 354 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 355 |
+
|
| 356 |
+
prompt = f"Solve the following mathematical problem step by step:\n\n{problem}\n\nSolution:"
|
| 357 |
+
|
| 358 |
+
request = GenerationRequest(
|
| 359 |
+
prompt=prompt,
|
| 360 |
+
max_length=2048,
|
| 361 |
+
temperature=0.3,
|
| 362 |
+
top_p=0.9,
|
| 363 |
+
do_sample=False,
|
| 364 |
+
task_type="mathematical_reasoning"
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
return await generate(request)
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
@app.post("/algorithm/design")
|
| 371 |
+
async def algorithm_design(
|
| 372 |
+
problem: str,
|
| 373 |
+
include_complexity: bool = True
|
| 374 |
+
):
|
| 375 |
+
"""Algorithm design endpoint"""
|
| 376 |
+
if model is None or tokenizer is None:
|
| 377 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 378 |
+
|
| 379 |
+
prompt = f"Design an efficient algorithm for the following problem:\n\n{problem}"
|
| 380 |
+
if include_complexity:
|
| 381 |
+
prompt += "\n\nInclude time and space complexity analysis."
|
| 382 |
+
|
| 383 |
+
request = GenerationRequest(
|
| 384 |
+
prompt=prompt,
|
| 385 |
+
max_length=3072,
|
| 386 |
+
temperature=0.5,
|
| 387 |
+
top_p=0.93,
|
| 388 |
+
do_sample=True,
|
| 389 |
+
task_type="algorithm_design"
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
return await generate(request)
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
def main():
|
| 396 |
+
"""Run the API server"""
|
| 397 |
+
import argparse
|
| 398 |
+
|
| 399 |
+
parser = argparse.ArgumentParser(description="Helion-OSC API Server")
|
| 400 |
+
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to bind to")
|
| 401 |
+
parser.add_argument("--port", type=int, default=8000, help="Port to bind to")
|
| 402 |
+
parser.add_argument("--reload", action="store_true", help="Enable auto-reload")
|
| 403 |
+
parser.add_argument("--workers", type=int, default=1, help="Number of worker processes")
|
| 404 |
+
|
| 405 |
+
args = parser.parse_args()
|
| 406 |
+
|
| 407 |
+
logger.info(f"Starting Helion-OSC API Server on {args.host}:{args.port}")
|
| 408 |
+
|
| 409 |
+
uvicorn.run(
|
| 410 |
+
"api_server:app",
|
| 411 |
+
host=args.host,
|
| 412 |
+
port=args.port,
|
| 413 |
+
reload=args.reload,
|
| 414 |
+
workers=args.workers
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
if __name__ == "__main__":
|
| 419 |
+
main()
|