AlexGall commited on
Commit
136442a
·
verified ·
1 Parent(s): 1589966

Create api_server.py

Browse files
Files changed (1) hide show
  1. api_server.py +419 -0
api_server.py ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Helion-OSC API Server
3
+ FastAPI-based REST API for serving Helion-OSC model
4
+ """
5
+
6
+ from fastapi import FastAPI, HTTPException, BackgroundTasks
7
+ from fastapi.middleware.cors import CORSMiddleware
8
+ from fastapi.responses import StreamingResponse
9
+ from pydantic import BaseModel, Field
10
+ from typing import Optional, List, Dict, Any, AsyncGenerator
11
+ import torch
12
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
13
+ from threading import Thread
14
+ import uvicorn
15
+ import logging
16
+ import time
17
+ import json
18
+ from queue import Queue
19
+ import asyncio
20
+
21
+ logging.basicConfig(level=logging.INFO)
22
+ logger = logging.getLogger(__name__)
23
+
24
+ # Initialize FastAPI app
25
+ app = FastAPI(
26
+ title="Helion-OSC API",
27
+ description="REST API for Helion-OSC Code Generation Model",
28
+ version="1.0.0"
29
+ )
30
+
31
+ # Add CORS middleware
32
+ app.add_middleware(
33
+ CORSMiddleware,
34
+ allow_origins=["*"],
35
+ allow_credentials=True,
36
+ allow_methods=["*"],
37
+ allow_headers=["*"],
38
+ )
39
+
40
+ # Global model variables
41
+ model = None
42
+ tokenizer = None
43
+ device = None
44
+
45
+
46
+ class GenerationRequest(BaseModel):
47
+ """Request model for text generation"""
48
+ prompt: str = Field(..., description="Input prompt for generation")
49
+ max_length: int = Field(2048, ge=1, le=16384, description="Maximum length of generation")
50
+ temperature: float = Field(0.7, ge=0.0, le=2.0, description="Sampling temperature")
51
+ top_p: float = Field(0.95, ge=0.0, le=1.0, description="Nucleus sampling parameter")
52
+ top_k: int = Field(50, ge=0, le=200, description="Top-k sampling parameter")
53
+ repetition_penalty: float = Field(1.05, ge=1.0, le=2.0, description="Repetition penalty")
54
+ do_sample: bool = Field(True, description="Whether to use sampling")
55
+ num_return_sequences: int = Field(1, ge=1, le=10, description="Number of sequences to generate")
56
+ stop_sequences: Optional[List[str]] = Field(None, description="Stop generation at these sequences")
57
+ stream: bool = Field(False, description="Stream the response")
58
+ task_type: Optional[str] = Field("code_generation", description="Task type for optimized parameters")
59
+
60
+
61
+ class GenerationResponse(BaseModel):
62
+ """Response model for text generation"""
63
+ generated_text: str
64
+ prompt: str
65
+ model: str
66
+ generation_time: float
67
+ tokens_generated: int
68
+
69
+
70
+ class ModelInfo(BaseModel):
71
+ """Model information"""
72
+ model_name: str
73
+ model_type: str
74
+ vocabulary_size: int
75
+ hidden_size: int
76
+ num_layers: int
77
+ device: str
78
+ dtype: str
79
+ max_position_embeddings: int
80
+
81
+
82
+ class HealthResponse(BaseModel):
83
+ """Health check response"""
84
+ status: str
85
+ model_loaded: bool
86
+ device: str
87
+ timestamp: float
88
+
89
+
90
+ @app.on_event("startup")
91
+ async def load_model():
92
+ """Load model on startup"""
93
+ global model, tokenizer, device
94
+
95
+ logger.info("Loading Helion-OSC model...")
96
+
97
+ model_name = "DeepXR/Helion-OSC"
98
+ device = "cuda" if torch.cuda.is_available() else "cpu"
99
+
100
+ try:
101
+ # Load tokenizer
102
+ tokenizer = AutoTokenizer.from_pretrained(
103
+ model_name,
104
+ trust_remote_code=True
105
+ )
106
+
107
+ if tokenizer.pad_token is None:
108
+ tokenizer.pad_token = tokenizer.eos_token
109
+
110
+ # Load model
111
+ model = AutoModelForCausalLM.from_pretrained(
112
+ model_name,
113
+ torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
114
+ device_map="auto" if device == "cuda" else None,
115
+ trust_remote_code=True,
116
+ low_cpu_mem_usage=True
117
+ )
118
+
119
+ if device == "cpu":
120
+ model = model.to(device)
121
+
122
+ model.eval()
123
+
124
+ logger.info(f"Model loaded successfully on {device}")
125
+
126
+ except Exception as e:
127
+ logger.error(f"Failed to load model: {e}")
128
+ raise
129
+
130
+
131
+ @app.get("/", response_model=Dict[str, str])
132
+ async def root():
133
+ """Root endpoint"""
134
+ return {
135
+ "message": "Helion-OSC API Server",
136
+ "version": "1.0.0",
137
+ "documentation": "/docs"
138
+ }
139
+
140
+
141
+ @app.get("/health", response_model=HealthResponse)
142
+ async def health_check():
143
+ """Health check endpoint"""
144
+ return HealthResponse(
145
+ status="healthy" if model is not None else "unhealthy",
146
+ model_loaded=model is not None,
147
+ device=device,
148
+ timestamp=time.time()
149
+ )
150
+
151
+
152
+ @app.get("/info", response_model=ModelInfo)
153
+ async def model_info():
154
+ """Get model information"""
155
+ if model is None:
156
+ raise HTTPException(status_code=503, detail="Model not loaded")
157
+
158
+ config = model.config
159
+
160
+ return ModelInfo(
161
+ model_name="DeepXR/Helion-OSC",
162
+ model_type=config.model_type,
163
+ vocabulary_size=config.vocab_size,
164
+ hidden_size=config.hidden_size,
165
+ num_layers=config.num_hidden_layers,
166
+ device=device,
167
+ dtype=str(next(model.parameters()).dtype),
168
+ max_position_embeddings=config.max_position_embeddings
169
+ )
170
+
171
+
172
+ @app.post("/generate", response_model=GenerationResponse)
173
+ async def generate(request: GenerationRequest):
174
+ """Generate text based on prompt"""
175
+ if model is None or tokenizer is None:
176
+ raise HTTPException(status_code=503, detail="Model not loaded")
177
+
178
+ if request.stream:
179
+ raise HTTPException(
180
+ status_code=400,
181
+ detail="Use /generate/stream endpoint for streaming responses"
182
+ )
183
+
184
+ start_time = time.time()
185
+
186
+ try:
187
+ # Tokenize input
188
+ inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
189
+ input_length = inputs.input_ids.shape[1]
190
+
191
+ # Generate
192
+ with torch.no_grad():
193
+ outputs = model.generate(
194
+ **inputs,
195
+ max_length=request.max_length,
196
+ temperature=request.temperature,
197
+ top_p=request.top_p,
198
+ top_k=request.top_k,
199
+ repetition_penalty=request.repetition_penalty,
200
+ do_sample=request.do_sample,
201
+ num_return_sequences=request.num_return_sequences,
202
+ pad_token_id=tokenizer.pad_token_id,
203
+ eos_token_id=tokenizer.eos_token_id
204
+ )
205
+
206
+ # Decode output
207
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
208
+
209
+ # Remove prompt from output
210
+ generated_text = generated_text[len(request.prompt):].strip()
211
+
212
+ generation_time = time.time() - start_time
213
+ tokens_generated = outputs.shape[1] - input_length
214
+
215
+ return GenerationResponse(
216
+ generated_text=generated_text,
217
+ prompt=request.prompt,
218
+ model="DeepXR/Helion-OSC",
219
+ generation_time=generation_time,
220
+ tokens_generated=tokens_generated
221
+ )
222
+
223
+ except Exception as e:
224
+ logger.error(f"Generation error: {e}")
225
+ raise HTTPException(status_code=500, detail=str(e))
226
+
227
+
228
+ @app.post("/generate/stream")
229
+ async def generate_stream(request: GenerationRequest):
230
+ """Generate text with streaming response"""
231
+ if model is None or tokenizer is None:
232
+ raise HTTPException(status_code=503, detail="Model not loaded")
233
+
234
+ async def stream_generator() -> AsyncGenerator[str, None]:
235
+ try:
236
+ # Tokenize input
237
+ inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
238
+
239
+ # Setup streamer
240
+ streamer = TextIteratorStreamer(
241
+ tokenizer,
242
+ skip_prompt=True,
243
+ skip_special_tokens=True
244
+ )
245
+
246
+ # Generation kwargs
247
+ generation_kwargs = {
248
+ **inputs,
249
+ "max_length": request.max_length,
250
+ "temperature": request.temperature,
251
+ "top_p": request.top_p,
252
+ "top_k": request.top_k,
253
+ "repetition_penalty": request.repetition_penalty,
254
+ "do_sample": request.do_sample,
255
+ "pad_token_id": tokenizer.pad_token_id,
256
+ "eos_token_id": tokenizer.eos_token_id,
257
+ "streamer": streamer
258
+ }
259
+
260
+ # Start generation in separate thread
261
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
262
+ thread.start()
263
+
264
+ # Stream tokens
265
+ for text in streamer:
266
+ yield f"data: {json.dumps({'text': text})}\n\n"
267
+ await asyncio.sleep(0) # Allow other tasks to run
268
+
269
+ yield f"data: {json.dumps({'done': True})}\n\n"
270
+
271
+ except Exception as e:
272
+ logger.error(f"Streaming error: {e}")
273
+ yield f"data: {json.dumps({'error': str(e)})}\n\n"
274
+
275
+ return StreamingResponse(
276
+ stream_generator(),
277
+ media_type="text/event-stream"
278
+ )
279
+
280
+
281
+ @app.post("/code/complete")
282
+ async def code_complete(
283
+ code: str,
284
+ language: Optional[str] = "python",
285
+ max_length: int = 1024
286
+ ):
287
+ """Code completion endpoint"""
288
+ if model is None or tokenizer is None:
289
+ raise HTTPException(status_code=503, detail="Model not loaded")
290
+
291
+ request = GenerationRequest(
292
+ prompt=code,
293
+ max_length=max_length,
294
+ temperature=0.6,
295
+ top_p=0.92,
296
+ do_sample=True,
297
+ task_type="code_completion"
298
+ )
299
+
300
+ return await generate(request)
301
+
302
+
303
+ @app.post("/code/explain")
304
+ async def code_explain(code: str, language: Optional[str] = "python"):
305
+ """Code explanation endpoint"""
306
+ if model is None or tokenizer is None:
307
+ raise HTTPException(status_code=503, detail="Model not loaded")
308
+
309
+ prompt = f"Explain the following {language} code in detail:\n\n```{language}\n{code}\n```\n\nExplanation:"
310
+
311
+ request = GenerationRequest(
312
+ prompt=prompt,
313
+ max_length=2048,
314
+ temperature=0.6,
315
+ top_p=0.9,
316
+ do_sample=True,
317
+ task_type="code_explanation"
318
+ )
319
+
320
+ return await generate(request)
321
+
322
+
323
+ @app.post("/code/debug")
324
+ async def code_debug(
325
+ code: str,
326
+ error_message: Optional[str] = None,
327
+ language: Optional[str] = "python"
328
+ ):
329
+ """Code debugging endpoint"""
330
+ if model is None or tokenizer is None:
331
+ raise HTTPException(status_code=503, detail="Model not loaded")
332
+
333
+ prompt = f"Debug the following {language} code:\n\n```{language}\n{code}\n```"
334
+ if error_message:
335
+ prompt += f"\n\nError message: {error_message}"
336
+ prompt += "\n\nProvide a detailed analysis and fixed code:"
337
+
338
+ request = GenerationRequest(
339
+ prompt=prompt,
340
+ max_length=2048,
341
+ temperature=0.4,
342
+ top_p=0.88,
343
+ do_sample=False,
344
+ task_type="debugging"
345
+ )
346
+
347
+ return await generate(request)
348
+
349
+
350
+ @app.post("/math/solve")
351
+ async def math_solve(problem: str):
352
+ """Mathematical problem solving endpoint"""
353
+ if model is None or tokenizer is None:
354
+ raise HTTPException(status_code=503, detail="Model not loaded")
355
+
356
+ prompt = f"Solve the following mathematical problem step by step:\n\n{problem}\n\nSolution:"
357
+
358
+ request = GenerationRequest(
359
+ prompt=prompt,
360
+ max_length=2048,
361
+ temperature=0.3,
362
+ top_p=0.9,
363
+ do_sample=False,
364
+ task_type="mathematical_reasoning"
365
+ )
366
+
367
+ return await generate(request)
368
+
369
+
370
+ @app.post("/algorithm/design")
371
+ async def algorithm_design(
372
+ problem: str,
373
+ include_complexity: bool = True
374
+ ):
375
+ """Algorithm design endpoint"""
376
+ if model is None or tokenizer is None:
377
+ raise HTTPException(status_code=503, detail="Model not loaded")
378
+
379
+ prompt = f"Design an efficient algorithm for the following problem:\n\n{problem}"
380
+ if include_complexity:
381
+ prompt += "\n\nInclude time and space complexity analysis."
382
+
383
+ request = GenerationRequest(
384
+ prompt=prompt,
385
+ max_length=3072,
386
+ temperature=0.5,
387
+ top_p=0.93,
388
+ do_sample=True,
389
+ task_type="algorithm_design"
390
+ )
391
+
392
+ return await generate(request)
393
+
394
+
395
+ def main():
396
+ """Run the API server"""
397
+ import argparse
398
+
399
+ parser = argparse.ArgumentParser(description="Helion-OSC API Server")
400
+ parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to bind to")
401
+ parser.add_argument("--port", type=int, default=8000, help="Port to bind to")
402
+ parser.add_argument("--reload", action="store_true", help="Enable auto-reload")
403
+ parser.add_argument("--workers", type=int, default=1, help="Number of worker processes")
404
+
405
+ args = parser.parse_args()
406
+
407
+ logger.info(f"Starting Helion-OSC API Server on {args.host}:{args.port}")
408
+
409
+ uvicorn.run(
410
+ "api_server:app",
411
+ host=args.host,
412
+ port=args.port,
413
+ reload=args.reload,
414
+ workers=args.workers
415
+ )
416
+
417
+
418
+ if __name__ == "__main__":
419
+ main()