Helion-OSC / evaluate.py
Trouter-Library's picture
Create evaluate.py (#2)
144a17b verified
"""
Helion-OSC Evaluation Script
Comprehensive evaluation suite for code generation and mathematical reasoning
"""
import os
import json
import torch
import logging
import numpy as np
from typing import List, Dict, Any, Optional, Tuple
from dataclasses import dataclass, field
from tqdm import tqdm
import subprocess
import tempfile
import signal
from contextlib import contextmanager
import multiprocessing as mp
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
import re
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class EvaluationConfig:
"""Configuration for evaluation"""
model_name: str = "DeepXR/Helion-OSC"
device: str = "cuda" if torch.cuda.is_available() else "cpu"
batch_size: int = 4
max_length: int = 2048
temperature: float = 0.7
top_p: float = 0.95
num_samples: int = 1
timeout: int = 5 # seconds for code execution
output_dir: str = "./evaluation_results"
class TimeoutException(Exception):
"""Exception raised when code execution times out"""
pass
@contextmanager
def time_limit(seconds):
"""Context manager for timing out code execution"""
def signal_handler(signum, frame):
raise TimeoutException("Code execution timed out")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
class CodeExecutor:
"""Safe code execution environment"""
@staticmethod
def execute_python(code: str, timeout: int = 5) -> Tuple[bool, str]:
"""
Execute Python code safely
Args:
code: Python code to execute
timeout: Timeout in seconds
Returns:
Tuple of (success, output/error)
"""
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
f.write(code)
temp_file = f.name
try:
result = subprocess.run(
['python', temp_file],
capture_output=True,
text=True,
timeout=timeout
)
os.unlink(temp_file)
if result.returncode == 0:
return True, result.stdout
else:
return False, result.stderr
except subprocess.TimeoutExpired:
os.unlink(temp_file)
return False, "Execution timed out"
except Exception as e:
if os.path.exists(temp_file):
os.unlink(temp_file)
return False, str(e)
@staticmethod
def check_syntax(code: str, language: str = "python") -> Tuple[bool, str]:
"""
Check code syntax without execution
Args:
code: Code to check
language: Programming language
Returns:
Tuple of (is_valid, error_message)
"""
if language.lower() == "python":
try:
compile(code, '<string>', 'exec')
return True, ""
except SyntaxError as e:
return False, str(e)
return True, "Syntax checking not implemented for this language"
class HumanEvalEvaluator:
"""Evaluator for HumanEval benchmark"""
def __init__(self, config: EvaluationConfig):
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
self.model = AutoModelForCausalLM.from_pretrained(
config.model_name,
torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
device_map="auto" if config.device == "cuda" else None
)
if config.device == "cpu":
self.model = self.model.to(config.device)
self.model.eval()
self.executor = CodeExecutor()
def load_humaneval(self) -> List[Dict]:
"""Load HumanEval dataset"""
logger.info("Loading HumanEval dataset...")
dataset = load_dataset("openai_humaneval", split="test")
return list(dataset)
def generate_solution(self, prompt: str) -> str:
"""Generate code solution for a prompt"""
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=self.config.max_length,
temperature=self.config.temperature,
top_p=self.config.top_p,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new generation
solution = generated[len(prompt):].strip()
return solution
def test_solution(self, solution: str, test_code: str) -> bool:
"""Test a solution against test cases"""
full_code = solution + "\n" + test_code
success, output = self.executor.execute_python(full_code, self.config.timeout)
return success
def evaluate(self) -> Dict[str, float]:
"""Run HumanEval evaluation"""
logger.info("Starting HumanEval evaluation...")
problems = self.load_humaneval()
results = {
"total": len(problems),
"passed": 0,
"failed": 0,
"syntax_errors": 0,
"runtime_errors": 0,
"timeouts": 0
}
for problem in tqdm(problems, desc="Evaluating HumanEval"):
prompt = problem["prompt"]
test = problem["test"]
entry_point = problem["entry_point"]
# Generate solution
solution = self.generate_solution(prompt)
# Check syntax
is_valid, error = self.executor.check_syntax(solution)
if not is_valid:
results["syntax_errors"] += 1
results["failed"] += 1
continue
# Test solution
try:
if self.test_solution(solution, test):
results["passed"] += 1
else:
results["failed"] += 1
results["runtime_errors"] += 1
except TimeoutException:
results["failed"] += 1
results["timeouts"] += 1
# Calculate pass@1
results["pass@1"] = results["passed"] / results["total"]
logger.info(f"HumanEval Results: {results}")
return results
class MBPPEvaluator:
"""Evaluator for MBPP (Mostly Basic Python Problems) benchmark"""
def __init__(self, config: EvaluationConfig):
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
self.model = AutoModelForCausalLM.from_pretrained(
config.model_name,
torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
device_map="auto" if config.device == "cuda" else None
)
if config.device == "cpu":
self.model = self.model.to(config.device)
self.model.eval()
self.executor = CodeExecutor()
def load_mbpp(self) -> List[Dict]:
"""Load MBPP dataset"""
logger.info("Loading MBPP dataset...")
dataset = load_dataset("mbpp", split="test")
return list(dataset)
def generate_solution(self, prompt: str) -> str:
"""Generate code solution"""
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=self.config.max_length,
temperature=self.config.temperature,
top_p=self.config.top_p,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
solution = generated[len(prompt):].strip()
return solution
def evaluate(self) -> Dict[str, float]:
"""Run MBPP evaluation"""
logger.info("Starting MBPP evaluation...")
problems = self.load_mbpp()
results = {
"total": len(problems),
"passed": 0,
"failed": 0
}
for problem in tqdm(problems, desc="Evaluating MBPP"):
prompt = problem["text"]
test_cases = problem["test_list"]
# Generate solution
solution = self.generate_solution(prompt)
# Test against all test cases
all_passed = True
for test in test_cases:
test_code = solution + "\n" + test
success, _ = self.executor.execute_python(test_code, self.config.timeout)
if not success:
all_passed = False
break
if all_passed:
results["passed"] += 1
else:
results["failed"] += 1
results["pass@1"] = results["passed"] / results["total"]
logger.info(f"MBPP Results: {results}")
return results
class GSM8KEvaluator:
"""Evaluator for GSM8K mathematical reasoning benchmark"""
def __init__(self, config: EvaluationConfig):
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
self.model = AutoModelForCausalLM.from_pretrained(
config.model_name,
torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
device_map="auto" if config.device == "cuda" else None
)
if config.device == "cpu":
self.model = self.model.to(config.device)
self.model.eval()
def load_gsm8k(self) -> List[Dict]:
"""Load GSM8K dataset"""
logger.info("Loading GSM8K dataset...")
dataset = load_dataset("gsm8k", "main", split="test")
return list(dataset)
def extract_answer(self, text: str) -> Optional[float]:
"""Extract numerical answer from text"""
# Look for patterns like "#### 42" or "The answer is 42"
patterns = [
r'####\s*(-?\d+\.?\d*)',
r'answer is\s*(-?\d+\.?\d*)',
r'equals?\s*(-?\d+\.?\d*)',
r'=\s*(-?\d+\.?\d*)',
r'\$?\s*(-?\d+\.?\d*)\s*$'
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
try:
return float(match.group(1))
except:
continue
return None
def generate_solution(self, problem: str) -> str:
"""Generate solution for math problem"""
prompt = f"Problem: {problem}\n\nLet's solve this step by step:\n"
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=self.config.max_length,
temperature=0.3,
top_p=0.9,
do_sample=False,
pad_token_id=self.tokenizer.eos_token_id
)
generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated
def evaluate(self) -> Dict[str, float]:
"""Run GSM8K evaluation"""
logger.info("Starting GSM8K evaluation...")
problems = self.load_gsm8k()
results = {
"total": len(problems),
"correct": 0,
"incorrect": 0,
"no_answer": 0
}
for problem in tqdm(problems, desc="Evaluating GSM8K"):
question = problem["question"]
correct_answer_text = problem["answer"]
# Extract correct answer
correct_answer = self.extract_answer(correct_answer_text)
if correct_answer is None:
continue
# Generate solution
solution = self.generate_solution(question)
# Extract predicted answer
predicted_answer = self.extract_answer(solution)
if predicted_answer is None:
results["no_answer"] += 1
results["incorrect"] += 1
elif abs(predicted_answer - correct_answer) < 1e-5:
results["correct"] += 1
else:
results["incorrect"] += 1
results["accuracy"] = results["correct"] / results["total"]
logger.info(f"GSM8K Results: {results}")
return results
class ComprehensiveEvaluator:
"""Run comprehensive evaluation across all benchmarks"""
def __init__(self, config: EvaluationConfig):
self.config = config
os.makedirs(config.output_dir, exist_ok=True)
def run_all_evaluations(self) -> Dict[str, Any]:
"""Run all evaluation benchmarks"""
logger.info("Starting comprehensive evaluation...")
all_results = {}
# HumanEval
try:
logger.info("\n" + "="*80)
logger.info("Running HumanEval Evaluation")
logger.info("="*80)
humaneval_evaluator = HumanEvalEvaluator(self.config)
all_results["humaneval"] = humaneval_evaluator.evaluate()
except Exception as e:
logger.error(f"HumanEval evaluation failed: {e}")
all_results["humaneval"] = {"error": str(e)}
# MBPP
try:
logger.info("\n" + "="*80)
logger.info("Running MBPP Evaluation")
logger.info("="*80)
mbpp_evaluator = MBPPEvaluator(self.config)
all_results["mbpp"] = mbpp_evaluator.evaluate()
except Exception as e:
logger.error(f"MBPP evaluation failed: {e}")
all_results["mbpp"] = {"error": str(e)}
# GSM8K
try:
logger.info("\n" + "="*80)
logger.info("Running GSM8K Evaluation")
logger.info("="*80)
gsm8k_evaluator = GSM8KEvaluator(self.config)
all_results["gsm8k"] = gsm8k_evaluator.evaluate()
except Exception as e:
logger.error(f"GSM8K evaluation failed: {e}")
all_results["gsm8k"] = {"error": str(e)}
# Save results
self.save_results(all_results)
# Print summary
self.print_summary(all_results)
return all_results
def save_results(self, results: Dict[str, Any]):
"""Save evaluation results to file"""
output_file = os.path.join(self.config.output_dir, "evaluation_results.json")
with open(output_file, 'w') as f:
json.dump(results, f, indent=2)
logger.info(f"Results saved to {output_file}")
def print_summary(self, results: Dict[str, Any]):
"""Print evaluation summary"""
logger.info("\n" + "="*80)
logger.info("EVALUATION SUMMARY")
logger.info("="*80)
if "humaneval" in results and "pass@1" in results["humaneval"]:
logger.info(f"HumanEval Pass@1: {results['humaneval']['pass@1']:.3f}")
if "mbpp" in results and "pass@1" in results["mbpp"]:
logger.info(f"MBPP Pass@1: {results['mbpp']['pass@1']:.3f}")
if "gsm8k" in results and "accuracy" in results["gsm8k"]:
logger.info(f"GSM8K Accuracy: {results['gsm8k']['accuracy']:.3f}")
logger.info("="*80)
def main():
"""Main evaluation script"""
import argparse
parser = argparse.ArgumentParser(description="Evaluate Helion-OSC model")
parser.add_argument("--model_name", type=str, default="DeepXR/Helion-OSC")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--max_length", type=int, default=2048)
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--top_p", type=float, default=0.95)
parser.add_argument("--timeout", type=int, default=5)
parser.add_argument("--output_dir", type=str, default="./evaluation_results")
parser.add_argument("--benchmark", type=str, choices=["all", "humaneval", "mbpp", "gsm8k"], default="all")
args = parser.parse_args()
config = EvaluationConfig(
model_name=args.model_name,
device=args.device,
batch_size=args.batch_size,
max_length=args.max_length,
temperature=args.temperature,
top_p=args.top_p,
timeout=args.timeout,
output_dir=args.output_dir
)
if args.benchmark == "all":
evaluator = ComprehensiveEvaluator(config)
evaluator.run_all_evaluations()
elif args.benchmark == "humaneval":
evaluator = HumanEvalEvaluator(config)
evaluator.evaluate()
elif args.benchmark == "mbpp":
evaluator = MBPPEvaluator(config)
evaluator.evaluate()
elif args.benchmark == "gsm8k":
evaluator = GSM8KEvaluator(config)
evaluator.evaluate()
if __name__ == "__main__":
main()