File size: 17,671 Bytes
144a17b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
"""
Helion-OSC Evaluation Script
Comprehensive evaluation suite for code generation and mathematical reasoning
"""
import os
import json
import torch
import logging
import numpy as np
from typing import List, Dict, Any, Optional, Tuple
from dataclasses import dataclass, field
from tqdm import tqdm
import subprocess
import tempfile
import signal
from contextlib import contextmanager
import multiprocessing as mp
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
import re
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class EvaluationConfig:
"""Configuration for evaluation"""
model_name: str = "DeepXR/Helion-OSC"
device: str = "cuda" if torch.cuda.is_available() else "cpu"
batch_size: int = 4
max_length: int = 2048
temperature: float = 0.7
top_p: float = 0.95
num_samples: int = 1
timeout: int = 5 # seconds for code execution
output_dir: str = "./evaluation_results"
class TimeoutException(Exception):
"""Exception raised when code execution times out"""
pass
@contextmanager
def time_limit(seconds):
"""Context manager for timing out code execution"""
def signal_handler(signum, frame):
raise TimeoutException("Code execution timed out")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
class CodeExecutor:
"""Safe code execution environment"""
@staticmethod
def execute_python(code: str, timeout: int = 5) -> Tuple[bool, str]:
"""
Execute Python code safely
Args:
code: Python code to execute
timeout: Timeout in seconds
Returns:
Tuple of (success, output/error)
"""
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
f.write(code)
temp_file = f.name
try:
result = subprocess.run(
['python', temp_file],
capture_output=True,
text=True,
timeout=timeout
)
os.unlink(temp_file)
if result.returncode == 0:
return True, result.stdout
else:
return False, result.stderr
except subprocess.TimeoutExpired:
os.unlink(temp_file)
return False, "Execution timed out"
except Exception as e:
if os.path.exists(temp_file):
os.unlink(temp_file)
return False, str(e)
@staticmethod
def check_syntax(code: str, language: str = "python") -> Tuple[bool, str]:
"""
Check code syntax without execution
Args:
code: Code to check
language: Programming language
Returns:
Tuple of (is_valid, error_message)
"""
if language.lower() == "python":
try:
compile(code, '<string>', 'exec')
return True, ""
except SyntaxError as e:
return False, str(e)
return True, "Syntax checking not implemented for this language"
class HumanEvalEvaluator:
"""Evaluator for HumanEval benchmark"""
def __init__(self, config: EvaluationConfig):
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
self.model = AutoModelForCausalLM.from_pretrained(
config.model_name,
torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
device_map="auto" if config.device == "cuda" else None
)
if config.device == "cpu":
self.model = self.model.to(config.device)
self.model.eval()
self.executor = CodeExecutor()
def load_humaneval(self) -> List[Dict]:
"""Load HumanEval dataset"""
logger.info("Loading HumanEval dataset...")
dataset = load_dataset("openai_humaneval", split="test")
return list(dataset)
def generate_solution(self, prompt: str) -> str:
"""Generate code solution for a prompt"""
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=self.config.max_length,
temperature=self.config.temperature,
top_p=self.config.top_p,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new generation
solution = generated[len(prompt):].strip()
return solution
def test_solution(self, solution: str, test_code: str) -> bool:
"""Test a solution against test cases"""
full_code = solution + "\n" + test_code
success, output = self.executor.execute_python(full_code, self.config.timeout)
return success
def evaluate(self) -> Dict[str, float]:
"""Run HumanEval evaluation"""
logger.info("Starting HumanEval evaluation...")
problems = self.load_humaneval()
results = {
"total": len(problems),
"passed": 0,
"failed": 0,
"syntax_errors": 0,
"runtime_errors": 0,
"timeouts": 0
}
for problem in tqdm(problems, desc="Evaluating HumanEval"):
prompt = problem["prompt"]
test = problem["test"]
entry_point = problem["entry_point"]
# Generate solution
solution = self.generate_solution(prompt)
# Check syntax
is_valid, error = self.executor.check_syntax(solution)
if not is_valid:
results["syntax_errors"] += 1
results["failed"] += 1
continue
# Test solution
try:
if self.test_solution(solution, test):
results["passed"] += 1
else:
results["failed"] += 1
results["runtime_errors"] += 1
except TimeoutException:
results["failed"] += 1
results["timeouts"] += 1
# Calculate pass@1
results["pass@1"] = results["passed"] / results["total"]
logger.info(f"HumanEval Results: {results}")
return results
class MBPPEvaluator:
"""Evaluator for MBPP (Mostly Basic Python Problems) benchmark"""
def __init__(self, config: EvaluationConfig):
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
self.model = AutoModelForCausalLM.from_pretrained(
config.model_name,
torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
device_map="auto" if config.device == "cuda" else None
)
if config.device == "cpu":
self.model = self.model.to(config.device)
self.model.eval()
self.executor = CodeExecutor()
def load_mbpp(self) -> List[Dict]:
"""Load MBPP dataset"""
logger.info("Loading MBPP dataset...")
dataset = load_dataset("mbpp", split="test")
return list(dataset)
def generate_solution(self, prompt: str) -> str:
"""Generate code solution"""
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=self.config.max_length,
temperature=self.config.temperature,
top_p=self.config.top_p,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
solution = generated[len(prompt):].strip()
return solution
def evaluate(self) -> Dict[str, float]:
"""Run MBPP evaluation"""
logger.info("Starting MBPP evaluation...")
problems = self.load_mbpp()
results = {
"total": len(problems),
"passed": 0,
"failed": 0
}
for problem in tqdm(problems, desc="Evaluating MBPP"):
prompt = problem["text"]
test_cases = problem["test_list"]
# Generate solution
solution = self.generate_solution(prompt)
# Test against all test cases
all_passed = True
for test in test_cases:
test_code = solution + "\n" + test
success, _ = self.executor.execute_python(test_code, self.config.timeout)
if not success:
all_passed = False
break
if all_passed:
results["passed"] += 1
else:
results["failed"] += 1
results["pass@1"] = results["passed"] / results["total"]
logger.info(f"MBPP Results: {results}")
return results
class GSM8KEvaluator:
"""Evaluator for GSM8K mathematical reasoning benchmark"""
def __init__(self, config: EvaluationConfig):
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
self.model = AutoModelForCausalLM.from_pretrained(
config.model_name,
torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
device_map="auto" if config.device == "cuda" else None
)
if config.device == "cpu":
self.model = self.model.to(config.device)
self.model.eval()
def load_gsm8k(self) -> List[Dict]:
"""Load GSM8K dataset"""
logger.info("Loading GSM8K dataset...")
dataset = load_dataset("gsm8k", "main", split="test")
return list(dataset)
def extract_answer(self, text: str) -> Optional[float]:
"""Extract numerical answer from text"""
# Look for patterns like "#### 42" or "The answer is 42"
patterns = [
r'####\s*(-?\d+\.?\d*)',
r'answer is\s*(-?\d+\.?\d*)',
r'equals?\s*(-?\d+\.?\d*)',
r'=\s*(-?\d+\.?\d*)',
r'\$?\s*(-?\d+\.?\d*)\s*$'
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
try:
return float(match.group(1))
except:
continue
return None
def generate_solution(self, problem: str) -> str:
"""Generate solution for math problem"""
prompt = f"Problem: {problem}\n\nLet's solve this step by step:\n"
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=self.config.max_length,
temperature=0.3,
top_p=0.9,
do_sample=False,
pad_token_id=self.tokenizer.eos_token_id
)
generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated
def evaluate(self) -> Dict[str, float]:
"""Run GSM8K evaluation"""
logger.info("Starting GSM8K evaluation...")
problems = self.load_gsm8k()
results = {
"total": len(problems),
"correct": 0,
"incorrect": 0,
"no_answer": 0
}
for problem in tqdm(problems, desc="Evaluating GSM8K"):
question = problem["question"]
correct_answer_text = problem["answer"]
# Extract correct answer
correct_answer = self.extract_answer(correct_answer_text)
if correct_answer is None:
continue
# Generate solution
solution = self.generate_solution(question)
# Extract predicted answer
predicted_answer = self.extract_answer(solution)
if predicted_answer is None:
results["no_answer"] += 1
results["incorrect"] += 1
elif abs(predicted_answer - correct_answer) < 1e-5:
results["correct"] += 1
else:
results["incorrect"] += 1
results["accuracy"] = results["correct"] / results["total"]
logger.info(f"GSM8K Results: {results}")
return results
class ComprehensiveEvaluator:
"""Run comprehensive evaluation across all benchmarks"""
def __init__(self, config: EvaluationConfig):
self.config = config
os.makedirs(config.output_dir, exist_ok=True)
def run_all_evaluations(self) -> Dict[str, Any]:
"""Run all evaluation benchmarks"""
logger.info("Starting comprehensive evaluation...")
all_results = {}
# HumanEval
try:
logger.info("\n" + "="*80)
logger.info("Running HumanEval Evaluation")
logger.info("="*80)
humaneval_evaluator = HumanEvalEvaluator(self.config)
all_results["humaneval"] = humaneval_evaluator.evaluate()
except Exception as e:
logger.error(f"HumanEval evaluation failed: {e}")
all_results["humaneval"] = {"error": str(e)}
# MBPP
try:
logger.info("\n" + "="*80)
logger.info("Running MBPP Evaluation")
logger.info("="*80)
mbpp_evaluator = MBPPEvaluator(self.config)
all_results["mbpp"] = mbpp_evaluator.evaluate()
except Exception as e:
logger.error(f"MBPP evaluation failed: {e}")
all_results["mbpp"] = {"error": str(e)}
# GSM8K
try:
logger.info("\n" + "="*80)
logger.info("Running GSM8K Evaluation")
logger.info("="*80)
gsm8k_evaluator = GSM8KEvaluator(self.config)
all_results["gsm8k"] = gsm8k_evaluator.evaluate()
except Exception as e:
logger.error(f"GSM8K evaluation failed: {e}")
all_results["gsm8k"] = {"error": str(e)}
# Save results
self.save_results(all_results)
# Print summary
self.print_summary(all_results)
return all_results
def save_results(self, results: Dict[str, Any]):
"""Save evaluation results to file"""
output_file = os.path.join(self.config.output_dir, "evaluation_results.json")
with open(output_file, 'w') as f:
json.dump(results, f, indent=2)
logger.info(f"Results saved to {output_file}")
def print_summary(self, results: Dict[str, Any]):
"""Print evaluation summary"""
logger.info("\n" + "="*80)
logger.info("EVALUATION SUMMARY")
logger.info("="*80)
if "humaneval" in results and "pass@1" in results["humaneval"]:
logger.info(f"HumanEval Pass@1: {results['humaneval']['pass@1']:.3f}")
if "mbpp" in results and "pass@1" in results["mbpp"]:
logger.info(f"MBPP Pass@1: {results['mbpp']['pass@1']:.3f}")
if "gsm8k" in results and "accuracy" in results["gsm8k"]:
logger.info(f"GSM8K Accuracy: {results['gsm8k']['accuracy']:.3f}")
logger.info("="*80)
def main():
"""Main evaluation script"""
import argparse
parser = argparse.ArgumentParser(description="Evaluate Helion-OSC model")
parser.add_argument("--model_name", type=str, default="DeepXR/Helion-OSC")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--max_length", type=int, default=2048)
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--top_p", type=float, default=0.95)
parser.add_argument("--timeout", type=int, default=5)
parser.add_argument("--output_dir", type=str, default="./evaluation_results")
parser.add_argument("--benchmark", type=str, choices=["all", "humaneval", "mbpp", "gsm8k"], default="all")
args = parser.parse_args()
config = EvaluationConfig(
model_name=args.model_name,
device=args.device,
batch_size=args.batch_size,
max_length=args.max_length,
temperature=args.temperature,
top_p=args.top_p,
timeout=args.timeout,
output_dir=args.output_dir
)
if args.benchmark == "all":
evaluator = ComprehensiveEvaluator(config)
evaluator.run_all_evaluations()
elif args.benchmark == "humaneval":
evaluator = HumanEvalEvaluator(config)
evaluator.evaluate()
elif args.benchmark == "mbpp":
evaluator = MBPPEvaluator(config)
evaluator.evaluate()
elif args.benchmark == "gsm8k":
evaluator = GSM8KEvaluator(config)
evaluator.evaluate()
if __name__ == "__main__":
main() |