File size: 17,671 Bytes
144a17b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
"""
Helion-OSC Evaluation Script
Comprehensive evaluation suite for code generation and mathematical reasoning
"""

import os
import json
import torch
import logging
import numpy as np
from typing import List, Dict, Any, Optional, Tuple
from dataclasses import dataclass, field
from tqdm import tqdm
import subprocess
import tempfile
import signal
from contextlib import contextmanager
import multiprocessing as mp
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
import re

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


@dataclass
class EvaluationConfig:
    """Configuration for evaluation"""
    model_name: str = "DeepXR/Helion-OSC"
    device: str = "cuda" if torch.cuda.is_available() else "cpu"
    batch_size: int = 4
    max_length: int = 2048
    temperature: float = 0.7
    top_p: float = 0.95
    num_samples: int = 1
    timeout: int = 5  # seconds for code execution
    output_dir: str = "./evaluation_results"


class TimeoutException(Exception):
    """Exception raised when code execution times out"""
    pass


@contextmanager
def time_limit(seconds):
    """Context manager for timing out code execution"""
    def signal_handler(signum, frame):
        raise TimeoutException("Code execution timed out")
    
    signal.signal(signal.SIGALRM, signal_handler)
    signal.alarm(seconds)
    try:
        yield
    finally:
        signal.alarm(0)


class CodeExecutor:
    """Safe code execution environment"""
    
    @staticmethod
    def execute_python(code: str, timeout: int = 5) -> Tuple[bool, str]:
        """
        Execute Python code safely
        
        Args:
            code: Python code to execute
            timeout: Timeout in seconds
            
        Returns:
            Tuple of (success, output/error)
        """
        with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
            f.write(code)
            temp_file = f.name
        
        try:
            result = subprocess.run(
                ['python', temp_file],
                capture_output=True,
                text=True,
                timeout=timeout
            )
            
            os.unlink(temp_file)
            
            if result.returncode == 0:
                return True, result.stdout
            else:
                return False, result.stderr
        
        except subprocess.TimeoutExpired:
            os.unlink(temp_file)
            return False, "Execution timed out"
        except Exception as e:
            if os.path.exists(temp_file):
                os.unlink(temp_file)
            return False, str(e)
    
    @staticmethod
    def check_syntax(code: str, language: str = "python") -> Tuple[bool, str]:
        """
        Check code syntax without execution
        
        Args:
            code: Code to check
            language: Programming language
            
        Returns:
            Tuple of (is_valid, error_message)
        """
        if language.lower() == "python":
            try:
                compile(code, '<string>', 'exec')
                return True, ""
            except SyntaxError as e:
                return False, str(e)
        
        return True, "Syntax checking not implemented for this language"


class HumanEvalEvaluator:
    """Evaluator for HumanEval benchmark"""
    
    def __init__(self, config: EvaluationConfig):
        self.config = config
        self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
        self.model = AutoModelForCausalLM.from_pretrained(
            config.model_name,
            torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
            device_map="auto" if config.device == "cuda" else None
        )
        if config.device == "cpu":
            self.model = self.model.to(config.device)
        self.model.eval()
        self.executor = CodeExecutor()
    
    def load_humaneval(self) -> List[Dict]:
        """Load HumanEval dataset"""
        logger.info("Loading HumanEval dataset...")
        dataset = load_dataset("openai_humaneval", split="test")
        return list(dataset)
    
    def generate_solution(self, prompt: str) -> str:
        """Generate code solution for a prompt"""
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_length=self.config.max_length,
                temperature=self.config.temperature,
                top_p=self.config.top_p,
                do_sample=True,
                pad_token_id=self.tokenizer.eos_token_id
            )
        
        generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        # Extract only the new generation
        solution = generated[len(prompt):].strip()
        return solution
    
    def test_solution(self, solution: str, test_code: str) -> bool:
        """Test a solution against test cases"""
        full_code = solution + "\n" + test_code
        success, output = self.executor.execute_python(full_code, self.config.timeout)
        return success
    
    def evaluate(self) -> Dict[str, float]:
        """Run HumanEval evaluation"""
        logger.info("Starting HumanEval evaluation...")
        
        problems = self.load_humaneval()
        results = {
            "total": len(problems),
            "passed": 0,
            "failed": 0,
            "syntax_errors": 0,
            "runtime_errors": 0,
            "timeouts": 0
        }
        
        for problem in tqdm(problems, desc="Evaluating HumanEval"):
            prompt = problem["prompt"]
            test = problem["test"]
            entry_point = problem["entry_point"]
            
            # Generate solution
            solution = self.generate_solution(prompt)
            
            # Check syntax
            is_valid, error = self.executor.check_syntax(solution)
            if not is_valid:
                results["syntax_errors"] += 1
                results["failed"] += 1
                continue
            
            # Test solution
            try:
                if self.test_solution(solution, test):
                    results["passed"] += 1
                else:
                    results["failed"] += 1
                    results["runtime_errors"] += 1
            except TimeoutException:
                results["failed"] += 1
                results["timeouts"] += 1
        
        # Calculate pass@1
        results["pass@1"] = results["passed"] / results["total"]
        
        logger.info(f"HumanEval Results: {results}")
        return results


class MBPPEvaluator:
    """Evaluator for MBPP (Mostly Basic Python Problems) benchmark"""
    
    def __init__(self, config: EvaluationConfig):
        self.config = config
        self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
        self.model = AutoModelForCausalLM.from_pretrained(
            config.model_name,
            torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
            device_map="auto" if config.device == "cuda" else None
        )
        if config.device == "cpu":
            self.model = self.model.to(config.device)
        self.model.eval()
        self.executor = CodeExecutor()
    
    def load_mbpp(self) -> List[Dict]:
        """Load MBPP dataset"""
        logger.info("Loading MBPP dataset...")
        dataset = load_dataset("mbpp", split="test")
        return list(dataset)
    
    def generate_solution(self, prompt: str) -> str:
        """Generate code solution"""
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_length=self.config.max_length,
                temperature=self.config.temperature,
                top_p=self.config.top_p,
                do_sample=True,
                pad_token_id=self.tokenizer.eos_token_id
            )
        
        generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        solution = generated[len(prompt):].strip()
        return solution
    
    def evaluate(self) -> Dict[str, float]:
        """Run MBPP evaluation"""
        logger.info("Starting MBPP evaluation...")
        
        problems = self.load_mbpp()
        results = {
            "total": len(problems),
            "passed": 0,
            "failed": 0
        }
        
        for problem in tqdm(problems, desc="Evaluating MBPP"):
            prompt = problem["text"]
            test_cases = problem["test_list"]
            
            # Generate solution
            solution = self.generate_solution(prompt)
            
            # Test against all test cases
            all_passed = True
            for test in test_cases:
                test_code = solution + "\n" + test
                success, _ = self.executor.execute_python(test_code, self.config.timeout)
                if not success:
                    all_passed = False
                    break
            
            if all_passed:
                results["passed"] += 1
            else:
                results["failed"] += 1
        
        results["pass@1"] = results["passed"] / results["total"]
        
        logger.info(f"MBPP Results: {results}")
        return results


class GSM8KEvaluator:
    """Evaluator for GSM8K mathematical reasoning benchmark"""
    
    def __init__(self, config: EvaluationConfig):
        self.config = config
        self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
        self.model = AutoModelForCausalLM.from_pretrained(
            config.model_name,
            torch_dtype=torch.bfloat16 if config.device == "cuda" else torch.float32,
            device_map="auto" if config.device == "cuda" else None
        )
        if config.device == "cpu":
            self.model = self.model.to(config.device)
        self.model.eval()
    
    def load_gsm8k(self) -> List[Dict]:
        """Load GSM8K dataset"""
        logger.info("Loading GSM8K dataset...")
        dataset = load_dataset("gsm8k", "main", split="test")
        return list(dataset)
    
    def extract_answer(self, text: str) -> Optional[float]:
        """Extract numerical answer from text"""
        # Look for patterns like "#### 42" or "The answer is 42"
        patterns = [
            r'####\s*(-?\d+\.?\d*)',
            r'answer is\s*(-?\d+\.?\d*)',
            r'equals?\s*(-?\d+\.?\d*)',
            r'=\s*(-?\d+\.?\d*)',
            r'\$?\s*(-?\d+\.?\d*)\s*$'
        ]
        
        for pattern in patterns:
            match = re.search(pattern, text, re.IGNORECASE)
            if match:
                try:
                    return float(match.group(1))
                except:
                    continue
        
        return None
    
    def generate_solution(self, problem: str) -> str:
        """Generate solution for math problem"""
        prompt = f"Problem: {problem}\n\nLet's solve this step by step:\n"
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.config.device)
        
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_length=self.config.max_length,
                temperature=0.3,
                top_p=0.9,
                do_sample=False,
                pad_token_id=self.tokenizer.eos_token_id
            )
        
        generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        return generated
    
    def evaluate(self) -> Dict[str, float]:
        """Run GSM8K evaluation"""
        logger.info("Starting GSM8K evaluation...")
        
        problems = self.load_gsm8k()
        results = {
            "total": len(problems),
            "correct": 0,
            "incorrect": 0,
            "no_answer": 0
        }
        
        for problem in tqdm(problems, desc="Evaluating GSM8K"):
            question = problem["question"]
            correct_answer_text = problem["answer"]
            
            # Extract correct answer
            correct_answer = self.extract_answer(correct_answer_text)
            if correct_answer is None:
                continue
            
            # Generate solution
            solution = self.generate_solution(question)
            
            # Extract predicted answer
            predicted_answer = self.extract_answer(solution)
            
            if predicted_answer is None:
                results["no_answer"] += 1
                results["incorrect"] += 1
            elif abs(predicted_answer - correct_answer) < 1e-5:
                results["correct"] += 1
            else:
                results["incorrect"] += 1
        
        results["accuracy"] = results["correct"] / results["total"]
        
        logger.info(f"GSM8K Results: {results}")
        return results


class ComprehensiveEvaluator:
    """Run comprehensive evaluation across all benchmarks"""
    
    def __init__(self, config: EvaluationConfig):
        self.config = config
        os.makedirs(config.output_dir, exist_ok=True)
    
    def run_all_evaluations(self) -> Dict[str, Any]:
        """Run all evaluation benchmarks"""
        logger.info("Starting comprehensive evaluation...")
        
        all_results = {}
        
        # HumanEval
        try:
            logger.info("\n" + "="*80)
            logger.info("Running HumanEval Evaluation")
            logger.info("="*80)
            humaneval_evaluator = HumanEvalEvaluator(self.config)
            all_results["humaneval"] = humaneval_evaluator.evaluate()
        except Exception as e:
            logger.error(f"HumanEval evaluation failed: {e}")
            all_results["humaneval"] = {"error": str(e)}
        
        # MBPP
        try:
            logger.info("\n" + "="*80)
            logger.info("Running MBPP Evaluation")
            logger.info("="*80)
            mbpp_evaluator = MBPPEvaluator(self.config)
            all_results["mbpp"] = mbpp_evaluator.evaluate()
        except Exception as e:
            logger.error(f"MBPP evaluation failed: {e}")
            all_results["mbpp"] = {"error": str(e)}
        
        # GSM8K
        try:
            logger.info("\n" + "="*80)
            logger.info("Running GSM8K Evaluation")
            logger.info("="*80)
            gsm8k_evaluator = GSM8KEvaluator(self.config)
            all_results["gsm8k"] = gsm8k_evaluator.evaluate()
        except Exception as e:
            logger.error(f"GSM8K evaluation failed: {e}")
            all_results["gsm8k"] = {"error": str(e)}
        
        # Save results
        self.save_results(all_results)
        
        # Print summary
        self.print_summary(all_results)
        
        return all_results
    
    def save_results(self, results: Dict[str, Any]):
        """Save evaluation results to file"""
        output_file = os.path.join(self.config.output_dir, "evaluation_results.json")
        with open(output_file, 'w') as f:
            json.dump(results, f, indent=2)
        logger.info(f"Results saved to {output_file}")
    
    def print_summary(self, results: Dict[str, Any]):
        """Print evaluation summary"""
        logger.info("\n" + "="*80)
        logger.info("EVALUATION SUMMARY")
        logger.info("="*80)
        
        if "humaneval" in results and "pass@1" in results["humaneval"]:
            logger.info(f"HumanEval Pass@1: {results['humaneval']['pass@1']:.3f}")
        
        if "mbpp" in results and "pass@1" in results["mbpp"]:
            logger.info(f"MBPP Pass@1: {results['mbpp']['pass@1']:.3f}")
        
        if "gsm8k" in results and "accuracy" in results["gsm8k"]:
            logger.info(f"GSM8K Accuracy: {results['gsm8k']['accuracy']:.3f}")
        
        logger.info("="*80)


def main():
    """Main evaluation script"""
    import argparse
    
    parser = argparse.ArgumentParser(description="Evaluate Helion-OSC model")
    parser.add_argument("--model_name", type=str, default="DeepXR/Helion-OSC")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
    parser.add_argument("--batch_size", type=int, default=4)
    parser.add_argument("--max_length", type=int, default=2048)
    parser.add_argument("--temperature", type=float, default=0.7)
    parser.add_argument("--top_p", type=float, default=0.95)
    parser.add_argument("--timeout", type=int, default=5)
    parser.add_argument("--output_dir", type=str, default="./evaluation_results")
    parser.add_argument("--benchmark", type=str, choices=["all", "humaneval", "mbpp", "gsm8k"], default="all")
    
    args = parser.parse_args()
    
    config = EvaluationConfig(
        model_name=args.model_name,
        device=args.device,
        batch_size=args.batch_size,
        max_length=args.max_length,
        temperature=args.temperature,
        top_p=args.top_p,
        timeout=args.timeout,
        output_dir=args.output_dir
    )
    
    if args.benchmark == "all":
        evaluator = ComprehensiveEvaluator(config)
        evaluator.run_all_evaluations()
    elif args.benchmark == "humaneval":
        evaluator = HumanEvalEvaluator(config)
        evaluator.evaluate()
    elif args.benchmark == "mbpp":
        evaluator = MBPPEvaluator(config)
        evaluator.evaluate()
    elif args.benchmark == "gsm8k":
        evaluator = GSM8KEvaluator(config)
        evaluator.evaluate()


if __name__ == "__main__":
    main()