results_indobert-large-p2_with_preprocessing
This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7340
- Accuracy: 0.7682
- Precision: 0.7704
- Recall: 0.7780
- F1: 0.7683
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 1.6625 | 1.0 | 111 | 1.5035 | 0.3091 | 0.4403 | 0.2582 | 0.1957 |
| 1.308 | 2.0 | 222 | 0.9854 | 0.625 | 0.6279 | 0.6245 | 0.6130 |
| 0.8448 | 3.0 | 333 | 0.7173 | 0.7386 | 0.7391 | 0.7463 | 0.7350 |
| 0.6389 | 4.0 | 444 | 0.7046 | 0.7477 | 0.7448 | 0.7636 | 0.7456 |
| 0.5053 | 5.0 | 555 | 0.7340 | 0.7682 | 0.7704 | 0.7780 | 0.7683 |
| 0.3884 | 6.0 | 666 | 0.7831 | 0.7295 | 0.7291 | 0.7480 | 0.7345 |
| 0.2848 | 7.0 | 777 | 0.8799 | 0.7545 | 0.7547 | 0.7633 | 0.7566 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 11
Model tree for Alfanatasya/results_indobert-large-p2_with_preprocessing
Base model
indobenchmark/indobert-large-p2