results_indobert-large-p2_aug_tuning
This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3955
- Accuracy: 0.7705
- Precision: 0.7774
- Recall: 0.7749
- F1: 0.7750
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.8653270259353978e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.9747 | 1.0 | 111 | 0.6608 | 0.7523 | 0.7708 | 0.7542 | 0.7598 |
| 0.4348 | 2.0 | 222 | 0.6787 | 0.7591 | 0.7801 | 0.7571 | 0.7658 |
| 0.2022 | 3.0 | 333 | 0.8357 | 0.7432 | 0.7629 | 0.7583 | 0.7561 |
| 0.073 | 4.0 | 444 | 1.0821 | 0.7591 | 0.7666 | 0.7698 | 0.7677 |
| 0.0294 | 5.0 | 555 | 1.2308 | 0.7545 | 0.7657 | 0.7611 | 0.7611 |
| 0.0083 | 6.0 | 666 | 1.3955 | 0.7705 | 0.7774 | 0.7749 | 0.7750 |
| 0.007 | 7.0 | 777 | 1.5031 | 0.7591 | 0.7703 | 0.7636 | 0.7659 |
| 0.0041 | 8.0 | 888 | 1.6204 | 0.75 | 0.7658 | 0.7599 | 0.7595 |
| 0.0022 | 9.0 | 999 | 1.5962 | 0.7455 | 0.7494 | 0.7536 | 0.7507 |
| 0.0051 | 10.0 | 1110 | 1.5960 | 0.7523 | 0.7595 | 0.7595 | 0.7593 |
| 0.0018 | 11.0 | 1221 | 1.6515 | 0.7591 | 0.7718 | 0.7639 | 0.7674 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 12
Model tree for Alfanatasya/results_indobert-large-p2_aug_tuning
Base model
indobenchmark/indobert-large-p2