Update README.md
Browse files
README.md
CHANGED
|
@@ -14,10 +14,10 @@ pipeline_tag: text-classification
|
|
| 14 |
[](https://pypi.org/project/qa-metrics/)
|
| 15 |
[](https://colab.research.google.com/drive/1Ke23KIeHFdPWad0BModmcWKZ6jSbF5nI?usp=sharing)
|
| 16 |
|
| 17 |
-
> Check out the main [Repo](https://github.com/zli12321/qa_metrics)
|
| 18 |
-
|
| 19 |
> A fast and lightweight Python package for evaluating question-answering models and prompting of black-box and open-source large language models.
|
| 20 |
|
|
|
|
|
|
|
| 21 |
## π Latest Updates
|
| 22 |
|
| 23 |
- **Version 0.2.19 Released!**
|
|
@@ -30,6 +30,13 @@ pipeline_tag: text-classification
|
|
| 30 |
|
| 31 |
## π Quick Start
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
### Prerequisites
|
| 34 |
- Python >= 3.6
|
| 35 |
- openai >= 1.0
|
|
@@ -51,9 +58,11 @@ Our package offers six QA evaluation methods with varying strengths:
|
|
| 51 |
| [Open Source LLM Evaluation](https://huggingface.co/zli12321/prometheus2-2B) | All QA types | Free | High |
|
| 52 |
| Black-box LLM Evaluation | All QA types | Paid | Highest |
|
| 53 |
|
|
|
|
|
|
|
| 54 |
## π Documentation
|
| 55 |
|
| 56 |
-
### 1. Normalized Exact Match
|
| 57 |
|
| 58 |
#### Method: `em_match`
|
| 59 |
**Parameters**
|
|
@@ -71,7 +80,7 @@ candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off
|
|
| 71 |
match_result = em_match(reference_answer, candidate_answer)
|
| 72 |
```
|
| 73 |
|
| 74 |
-
### 2. F1 Score
|
| 75 |
|
| 76 |
#### Method: `f1_score_with_precision_recall`
|
| 77 |
**Parameters**
|
|
@@ -97,7 +106,7 @@ f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer)
|
|
| 97 |
match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
|
| 98 |
```
|
| 99 |
|
| 100 |
-
### 3. PEDANTS
|
| 101 |
|
| 102 |
#### Method: `get_score`
|
| 103 |
**Parameters**
|
|
@@ -160,7 +169,7 @@ scores = pedant.get_scores(reference_answer, candidate_answer, question)
|
|
| 160 |
match_result = pedant.evaluate(reference_answer, candidate_answer, question)
|
| 161 |
```
|
| 162 |
|
| 163 |
-
### 4. Transformer Neural Evaluation
|
| 164 |
|
| 165 |
#### Method: `get_score`
|
| 166 |
**Parameters**
|
|
@@ -206,7 +215,7 @@ tm = TransformerMatcher("zli12321/answer_equivalence_tiny_bert")
|
|
| 206 |
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
|
| 207 |
```
|
| 208 |
|
| 209 |
-
### 5. LLM Integration
|
| 210 |
|
| 211 |
#### Method: `prompt_gpt`
|
| 212 |
**Parameters**
|
|
|
|
| 14 |
[](https://pypi.org/project/qa-metrics/)
|
| 15 |
[](https://colab.research.google.com/drive/1Ke23KIeHFdPWad0BModmcWKZ6jSbF5nI?usp=sharing)
|
| 16 |
|
|
|
|
|
|
|
| 17 |
> A fast and lightweight Python package for evaluating question-answering models and prompting of black-box and open-source large language models.
|
| 18 |
|
| 19 |
+
> `pip install qa-metrics` is all you need!
|
| 20 |
+
|
| 21 |
## π Latest Updates
|
| 22 |
|
| 23 |
- **Version 0.2.19 Released!**
|
|
|
|
| 30 |
|
| 31 |
## π Quick Start
|
| 32 |
|
| 33 |
+
## Table of Contents
|
| 34 |
+
* 1. [Normalized Exact Match](#em)
|
| 35 |
+
* 2. [Token F1 Score](#f1)
|
| 36 |
+
* 3. [PEDANTS](#pedants)
|
| 37 |
+
* 4. [Finetuned Neural Matching](#neural)
|
| 38 |
+
* 5. [Prompting LLM](#llm)
|
| 39 |
+
|
| 40 |
### Prerequisites
|
| 41 |
- Python >= 3.6
|
| 42 |
- openai >= 1.0
|
|
|
|
| 58 |
| [Open Source LLM Evaluation](https://huggingface.co/zli12321/prometheus2-2B) | All QA types | Free | High |
|
| 59 |
| Black-box LLM Evaluation | All QA types | Paid | Highest |
|
| 60 |
|
| 61 |
+
|
| 62 |
+
|
| 63 |
## π Documentation
|
| 64 |
|
| 65 |
+
### 1. <a name='em'></a>Normalized Exact Match
|
| 66 |
|
| 67 |
#### Method: `em_match`
|
| 68 |
**Parameters**
|
|
|
|
| 80 |
match_result = em_match(reference_answer, candidate_answer)
|
| 81 |
```
|
| 82 |
|
| 83 |
+
### 2. <a name='f1'></a>F1 Score
|
| 84 |
|
| 85 |
#### Method: `f1_score_with_precision_recall`
|
| 86 |
**Parameters**
|
|
|
|
| 106 |
match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
|
| 107 |
```
|
| 108 |
|
| 109 |
+
### 3. <a name='pedants'></a>PEDANTS
|
| 110 |
|
| 111 |
#### Method: `get_score`
|
| 112 |
**Parameters**
|
|
|
|
| 169 |
match_result = pedant.evaluate(reference_answer, candidate_answer, question)
|
| 170 |
```
|
| 171 |
|
| 172 |
+
### 4. <a name='neural'></a>Transformer Neural Evaluation
|
| 173 |
|
| 174 |
#### Method: `get_score`
|
| 175 |
**Parameters**
|
|
|
|
| 215 |
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
|
| 216 |
```
|
| 217 |
|
| 218 |
+
### 5. <a name='llm'></a>LLM Integration
|
| 219 |
|
| 220 |
#### Method: `prompt_gpt`
|
| 221 |
**Parameters**
|