Update README.md
Browse files
README.md
CHANGED
|
@@ -9,54 +9,57 @@ metrics:
|
|
| 9 |
- bertscore
|
| 10 |
pipeline_tag: text-classification
|
| 11 |
---
|
| 12 |
-
# QA-Evaluation-Metrics
|
| 13 |
|
| 14 |
[](https://pypi.org/project/qa-metrics/)
|
| 15 |
-
[](https://colab.research.google.com/drive/
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
-
- Uopdated to version 0.2.17
|
| 21 |
-
- Supports prompting OPENAI GPT-series models and Claude Series models now. (Assuimg OPENAI version > 1.0)
|
| 22 |
-
- Supports prompting various open source models such as LLaMA-2-70B-chat, LLaVA-1.5 etc by calling API from [deepinfra](https://deepinfra.com/models).
|
| 23 |
-
- Added trained tiny-bert for QA evaluation. Model size is 18 MB.
|
| 24 |
-
- Pass huggingface repository name to download model directly for TransformerMatcher
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
##
|
| 28 |
-
* Python version >= 3.6
|
| 29 |
-
* openai version >= 1.0
|
| 30 |
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
```bash
|
| 35 |
pip install qa-metrics
|
| 36 |
```
|
| 37 |
|
| 38 |
-
##
|
| 39 |
|
| 40 |
-
|
| 41 |
-
- Given a set of gold answers, a candidate answer to be evaluated, and a question (if applicable), the evaluation returns True if the candidate answer matches any one of the gold answer, False otherwise.
|
| 42 |
-
- Different evaluation methods have distinct strictness of evaluating the correctness of a candidate answer. Some have higher correlation with human judgments than others.
|
| 43 |
-
- Normalized Exact Match and Question/Answer type Evaluation are the most efficient method. They are suitable for short-form QA datasets such as NQ-OPEN, Hotpot QA, TriviaQA, SQuAD, etc.
|
| 44 |
-
- Question/Answer Type Evaluation and Transformer Neural evaluations are cost free and suitable for short-form and longer-form QA datasets. They have higher correlation with human judgments than exact match and F1 score when the length of the gold and candidate answers become long.
|
| 45 |
-
- Black-box LLM evaluations are closest to human evaluations, and they are not cost-free.
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
| 56 |
|
| 57 |
**Returns**
|
| 58 |
-
|
| 59 |
-
- `boolean`: A boolean True/False signifying matches between reference or candidate answers.
|
| 60 |
|
| 61 |
```python
|
| 62 |
from qa_metrics.em import em_match
|
|
@@ -64,202 +67,223 @@ from qa_metrics.em import em_match
|
|
| 64 |
reference_answer = ["The Frog Prince", "The Princess and the Frog"]
|
| 65 |
candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off the Brother Grimm's \"Iron Henry\""
|
| 66 |
match_result = em_match(reference_answer, candidate_answer)
|
| 67 |
-
print("Exact Match: ", match_result)
|
| 68 |
-
'''
|
| 69 |
-
Exact Match: False
|
| 70 |
-
'''
|
| 71 |
```
|
| 72 |
|
| 73 |
-
|
| 74 |
-
#### `f1_score_with_precision_recall`
|
| 75 |
-
|
| 76 |
-
Calculates F1 score, precision, and recall between a reference and a candidate answer.
|
| 77 |
|
|
|
|
| 78 |
**Parameters**
|
| 79 |
-
|
| 80 |
-
- `
|
| 81 |
-
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated.
|
| 82 |
|
| 83 |
**Returns**
|
|
|
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
```python
|
| 88 |
-
from qa_metrics.f1 import f1_match,f1_score_with_precision_recall
|
| 89 |
|
| 90 |
f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer)
|
| 91 |
-
print("F1 stats: ", f1_stats)
|
| 92 |
-
'''
|
| 93 |
-
F1 stats: {'f1': 0.25, 'precision': 0.6666666666666666, 'recall': 0.15384615384615385}
|
| 94 |
-
'''
|
| 95 |
-
|
| 96 |
match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
|
| 97 |
-
print("F1 Match: ", match_result)
|
| 98 |
-
'''
|
| 99 |
-
F1 Match: False
|
| 100 |
-
'''
|
| 101 |
```
|
| 102 |
|
| 103 |
-
|
| 104 |
-
#### 1. `get_highest_score`
|
| 105 |
-
|
| 106 |
-
Returns the gold answer and candidate answer pair that has the highest matching score. This function is useful for evaluating the closest match to a given candidate response based on a list of reference answers.
|
| 107 |
|
|
|
|
| 108 |
**Parameters**
|
| 109 |
-
|
| 110 |
-
- `
|
| 111 |
-
- `
|
| 112 |
-
- `question` (str): The question for which the answers are being evaluated.
|
| 113 |
|
| 114 |
**Returns**
|
|
|
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
Returns
|
|
|
|
| 121 |
|
|
|
|
| 122 |
**Parameters**
|
| 123 |
-
|
| 124 |
-
- `
|
| 125 |
-
- `
|
| 126 |
-
- `question` (str): The question for which the answers are being evaluated.
|
| 127 |
|
| 128 |
**Returns**
|
|
|
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
Returns
|
|
|
|
| 135 |
|
|
|
|
| 136 |
**Parameters**
|
| 137 |
-
|
| 138 |
-
- `
|
| 139 |
-
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated.
|
| 140 |
-
- `question` (str): The question for which the answers are being evaluated.
|
| 141 |
|
| 142 |
**Returns**
|
|
|
|
| 143 |
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
|
|
|
|
|
|
| 146 |
|
| 147 |
```python
|
| 148 |
from qa_metrics.pedant import PEDANT
|
| 149 |
|
| 150 |
-
question = "Which movie is loosley based off the Brother Grimm's Iron Henry?"
|
| 151 |
pedant = PEDANT()
|
| 152 |
scores = pedant.get_scores(reference_answer, candidate_answer, question)
|
| 153 |
-
max_pair, highest_scores = pedant.get_highest_score(reference_answer, candidate_answer, question)
|
| 154 |
match_result = pedant.evaluate(reference_answer, candidate_answer, question)
|
| 155 |
-
print("Max Pair: %s; Highest Score: %s" % (max_pair, highest_scores))
|
| 156 |
-
print("Score: %s; PANDA Match: %s" % (scores, match_result))
|
| 157 |
-
'''
|
| 158 |
-
Max Pair: ('the princess and the frog', 'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"'); Highest Score: 0.854451712151719
|
| 159 |
-
Score: {'the frog prince': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.7131625951317375}, 'the princess and the frog': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.854451712151719}}; PANDA Match: True
|
| 160 |
-
'''
|
| 161 |
-
```
|
| 162 |
-
|
| 163 |
-
```python
|
| 164 |
-
print(pedant.get_score(reference_answer[1], candidate_answer, question))
|
| 165 |
-
'''
|
| 166 |
-
0.7122460127464126
|
| 167 |
-
'''
|
| 168 |
```
|
| 169 |
|
| 170 |
-
|
| 171 |
-
Our fine-tuned BERT model is on π€ [Huggingface](https://huggingface.co/Zongxia/answer_equivalence_bert?text=The+goal+of+life+is+%5BMASK%5D.). Our Package also supports downloading and matching directly. [distilroberta](https://huggingface.co/Zongxia/answer_equivalence_distilroberta), [distilbert](https://huggingface.co/Zongxia/answer_equivalence_distilbert), [roberta](https://huggingface.co/Zongxia/answer_equivalence_roberta), and [roberta-large](https://huggingface.co/Zongxia/answer_equivalence_roberta-large) are also supported now! π₯π₯π₯
|
| 172 |
|
| 173 |
-
#### `
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
Returns
|
|
|
|
| 176 |
|
|
|
|
| 177 |
**Parameters**
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
-
- `
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
**Returns**
|
|
|
|
| 184 |
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
```python
|
| 188 |
from qa_metrics.transformerMatcher import TransformerMatcher
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
tm = TransformerMatcher("zli12321/answer_equivalence_bert")
|
| 193 |
-
scores = tm.get_scores(reference_answer, candidate_answer, question)
|
| 194 |
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
|
| 195 |
-
print("Score: %s; bert Match: %s" % (scores, match_result))
|
| 196 |
-
'''
|
| 197 |
-
Score: {'The Frog Prince': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.6934309}, 'The Princess and the Frog': {'The movie "The Princess and the Frog" is loosely based off the Brother Grimm\'s "Iron Henry"': 0.7400551}}; TM Match: True
|
| 198 |
-
'''
|
| 199 |
```
|
| 200 |
|
| 201 |
-
|
| 202 |
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
-
###### OpenAI
|
| 206 |
```python
|
| 207 |
from qa_metrics.prompt_llm import CloseLLM
|
|
|
|
| 208 |
model = CloseLLM()
|
| 209 |
model.set_openai_api_key(YOUR_OPENAI_KEY)
|
| 210 |
-
prompt =
|
| 211 |
-
model.prompt_gpt(prompt=prompt, model_engine='gpt-3.5-turbo', temperature=0.1, max_tokens=10)
|
| 212 |
-
|
| 213 |
-
'''
|
| 214 |
-
'correct'
|
| 215 |
-
'''
|
| 216 |
```
|
| 217 |
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
```python
|
| 220 |
model = CloseLLM()
|
| 221 |
-
model.set_anthropic_api_key(
|
| 222 |
-
model.prompt_claude(prompt=prompt, model_engine='claude-v1'
|
| 223 |
-
|
| 224 |
-
'''
|
| 225 |
-
'correct'
|
| 226 |
-
'''
|
| 227 |
```
|
| 228 |
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
```python
|
| 231 |
from qa_metrics.prompt_open_llm import OpenLLM
|
|
|
|
| 232 |
model = OpenLLM()
|
| 233 |
model.set_deepinfra_key(YOUR_DEEPINFRA_KEY)
|
| 234 |
-
model.prompt(message=prompt, model_engine='mistralai/Mixtral-8x7B-Instruct-v0.1'
|
| 235 |
-
|
| 236 |
-
'''
|
| 237 |
-
'correct'
|
| 238 |
-
'''
|
| 239 |
```
|
| 240 |
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
```bibtex
|
| 243 |
-
@misc{
|
| 244 |
-
title={
|
| 245 |
author={Zongxia Li and Ishani Mondal and Yijun Liang and Huy Nghiem and Jordan Lee Boyd-Graber},
|
| 246 |
year={2024},
|
| 247 |
eprint={2402.11161},
|
| 248 |
archivePrefix={arXiv},
|
| 249 |
-
primaryClass={cs.CL}
|
|
|
|
| 250 |
}
|
| 251 |
```
|
| 252 |
|
|
|
|
| 253 |
|
| 254 |
-
|
| 255 |
-
- [01/24/24] π₯ The full paper is uploaded and can be accessed [here](https://arxiv.org/abs/2402.11161). The dataset is expanded and leaderboard is updated.
|
| 256 |
-
- Our Training Dataset is adapted and augmented from [Bulian et al](https://github.com/google-research-datasets/answer-equivalence-dataset). Our [dataset repo](https://github.com/zli12321/Answer_Equivalence_Dataset.git) includes the augmented training set and QA evaluation testing sets discussed in our paper.
|
| 257 |
-
- Now our model supports [distilroberta](https://huggingface.co/Zongxia/answer_equivalence_distilroberta), [distilbert](https://huggingface.co/Zongxia/answer_equivalence_distilbert), a smaller and more robust matching model than Bert!
|
| 258 |
-
|
| 259 |
-
## License
|
| 260 |
-
|
| 261 |
-
This project is licensed under the [MIT License](LICENSE.md) - see the LICENSE file for details.
|
| 262 |
|
| 263 |
-
## Contact
|
| 264 |
|
| 265 |
-
For
|
|
|
|
| 9 |
- bertscore
|
| 10 |
pipeline_tag: text-classification
|
| 11 |
---
|
| 12 |
+
# QA-Evaluation-Metrics π
|
| 13 |
|
| 14 |
[](https://pypi.org/project/qa-metrics/)
|
| 15 |
+
[](https://colab.research.google.com/drive/1Ke23KIeHFdPWad0BModmcWKZ6jSbF5nI?usp=sharing)
|
| 16 |
|
| 17 |
+
> A fast and lightweight Python package for evaluating question-answering models and prompting of black-box and open-source large language models.
|
| 18 |
|
| 19 |
+
## π Latest Updates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
- **Version 0.2.19 Released!**
|
| 22 |
+
- Paper accepted to EMNLP 2024 Findings! π
|
| 23 |
+
- Enhanced PEDANTS with multi-pipeline support and improved edge case handling
|
| 24 |
+
- Added support for OpenAI GPT-series and Claude Series models (OpenAI version > 1.0)
|
| 25 |
+
- Integrated support for open-source models (LLaMA-2-70B-chat, LLaVA-1.5, etc.) via [deepinfra](https://deepinfra.com/models)
|
| 26 |
+
- Introduced trained tiny-bert for QA evaluation (18MB model size)
|
| 27 |
+
- Added direct Huggingface model download support for TransformerMatcher
|
| 28 |
|
| 29 |
+
## π Quick Start
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
### Prerequisites
|
| 32 |
+
- Python >= 3.6
|
| 33 |
+
- openai >= 1.0
|
| 34 |
|
| 35 |
+
### Installation
|
|
|
|
| 36 |
```bash
|
| 37 |
pip install qa-metrics
|
| 38 |
```
|
| 39 |
|
| 40 |
+
## π‘ Features
|
| 41 |
|
| 42 |
+
Our package offers six QA evaluation methods with varying strengths:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
| Method | Best For | Cost | Correlation with Human Judgment |
|
| 45 |
+
|--------|----------|------|--------------------------------|
|
| 46 |
+
| Normalized Exact Match | Short-form QA (NQ-OPEN, HotpotQA, etc.) | Free | Good |
|
| 47 |
+
| PEDANTS | Both short & medium-form QA | Free | Very High |
|
| 48 |
+
| [Neural Evaluation](https://huggingface.co/zli12321/answer_equivalence_tiny_bert) | Both short & long-form QA | Free | High |
|
| 49 |
+
| [Open Source LLM Evaluation](https://huggingface.co/zli12321/prometheus2-2B) | All QA types | Free | High |
|
| 50 |
+
| Black-box LLM Evaluation | All QA types | Paid | Highest |
|
| 51 |
|
| 52 |
+
## π Documentation
|
| 53 |
|
| 54 |
+
### 1. Normalized Exact Match
|
| 55 |
|
| 56 |
+
#### Method: `em_match`
|
| 57 |
+
**Parameters**
|
| 58 |
+
- `reference_answer` (list of str): A list of gold (correct) answers to the question
|
| 59 |
+
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated
|
| 60 |
|
| 61 |
**Returns**
|
| 62 |
+
- `boolean`: True if there are any exact normalized matches between gold and candidate answers
|
|
|
|
| 63 |
|
| 64 |
```python
|
| 65 |
from qa_metrics.em import em_match
|
|
|
|
| 67 |
reference_answer = ["The Frog Prince", "The Princess and the Frog"]
|
| 68 |
candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off the Brother Grimm's \"Iron Henry\""
|
| 69 |
match_result = em_match(reference_answer, candidate_answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
```
|
| 71 |
|
| 72 |
+
### 2. F1 Score
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
#### Method: `f1_score_with_precision_recall`
|
| 75 |
**Parameters**
|
| 76 |
+
- `reference_answer` (str): A gold (correct) answer to the question
|
| 77 |
+
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated
|
|
|
|
| 78 |
|
| 79 |
**Returns**
|
| 80 |
+
- `dictionary`: Contains the F1 score, precision, and recall between a gold and candidate answer
|
| 81 |
|
| 82 |
+
#### Method: `f1_match`
|
| 83 |
+
**Parameters**
|
| 84 |
+
- `reference_answer` (list of str): List of gold answers
|
| 85 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 86 |
+
- `threshold` (float): F1 score threshold for considering a match (default: 0.5)
|
| 87 |
+
|
| 88 |
+
**Returns**
|
| 89 |
+
- `boolean`: True if F1 score exceeds threshold for any gold answer
|
| 90 |
|
| 91 |
```python
|
| 92 |
+
from qa_metrics.f1 import f1_match, f1_score_with_precision_recall
|
| 93 |
|
| 94 |
f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
```
|
| 97 |
|
| 98 |
+
### 3. PEDANTS
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
#### Method: `get_score`
|
| 101 |
**Parameters**
|
| 102 |
+
- `reference_answer` (str): A Gold answer
|
| 103 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 104 |
+
- `question` (str): The question being evaluated
|
|
|
|
| 105 |
|
| 106 |
**Returns**
|
| 107 |
+
- `float`: The similarity score between two strings (0 to 1)
|
| 108 |
|
| 109 |
+
#### Method: `get_highest_score`
|
| 110 |
+
**Parameters**
|
| 111 |
+
- `reference_answer` (list of str): List of gold answers
|
| 112 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 113 |
+
- `question` (str): The question being evaluated
|
| 114 |
|
| 115 |
+
**Returns**
|
| 116 |
+
- `dictionary`: Contains the gold answer and candidate answer pair with highest matching score
|
| 117 |
|
| 118 |
+
#### Method: `get_scores`
|
| 119 |
**Parameters**
|
| 120 |
+
- `reference_answer` (list of str): List of gold answers
|
| 121 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 122 |
+
- `question` (str): The question being evaluated
|
|
|
|
| 123 |
|
| 124 |
**Returns**
|
| 125 |
+
- `dictionary`: Contains matching scores for all gold answer and candidate answer pairs
|
| 126 |
|
| 127 |
+
#### Method: `evaluate`
|
| 128 |
+
**Parameters**
|
| 129 |
+
- `reference_answer` (list of str): List of gold answers
|
| 130 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 131 |
+
- `question` (str): The question being evaluated
|
| 132 |
|
| 133 |
+
**Returns**
|
| 134 |
+
- `boolean`: True if candidate answer matches any gold answer
|
| 135 |
|
| 136 |
+
#### Method: `get_question_type`
|
| 137 |
**Parameters**
|
| 138 |
+
- `reference_answer` (list of str): List of gold answers
|
| 139 |
+
- `question` (str): The question being evaluated
|
|
|
|
|
|
|
| 140 |
|
| 141 |
**Returns**
|
| 142 |
+
- `list`: The type of the question (what, who, when, how, why, which, where)
|
| 143 |
|
| 144 |
+
#### Method: `get_judgement_type`
|
| 145 |
+
**Parameters**
|
| 146 |
+
- `reference_answer` (list of str): List of gold answers
|
| 147 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 148 |
+
- `question` (str): The question being evaluated
|
| 149 |
|
| 150 |
+
**Returns**
|
| 151 |
+
- `list`: A list revised rules applicable to judge answer correctness
|
| 152 |
|
| 153 |
```python
|
| 154 |
from qa_metrics.pedant import PEDANT
|
| 155 |
|
|
|
|
| 156 |
pedant = PEDANT()
|
| 157 |
scores = pedant.get_scores(reference_answer, candidate_answer, question)
|
|
|
|
| 158 |
match_result = pedant.evaluate(reference_answer, candidate_answer, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
```
|
| 160 |
|
| 161 |
+
### 4. Transformer Neural Evaluation
|
|
|
|
| 162 |
|
| 163 |
+
#### Method: `get_score`
|
| 164 |
+
**Parameters**
|
| 165 |
+
- `reference_answer` (str): A Gold answer
|
| 166 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 167 |
+
- `question` (str): The question being evaluated
|
| 168 |
|
| 169 |
+
**Returns**
|
| 170 |
+
- `float`: The similarity score between two strings (0 to 1)
|
| 171 |
|
| 172 |
+
#### Method: `get_highest_score`
|
| 173 |
**Parameters**
|
| 174 |
+
- `reference_answer` (list of str): List of gold answers
|
| 175 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 176 |
+
- `question` (str): The question being evaluated
|
| 177 |
|
| 178 |
+
**Returns**
|
| 179 |
+
- `dictionary`: Contains the gold answer and candidate answer pair with highest matching score
|
| 180 |
+
|
| 181 |
+
#### Method: `get_scores`
|
| 182 |
+
**Parameters**
|
| 183 |
+
- `reference_answer` (list of str): List of gold answers
|
| 184 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 185 |
+
- `question` (str): The question being evaluated
|
| 186 |
|
| 187 |
**Returns**
|
| 188 |
+
- `dictionary`: Contains matching scores for all gold answer and candidate answer pairs
|
| 189 |
|
| 190 |
+
#### Method: `transformer_match`
|
| 191 |
+
**Parameters**
|
| 192 |
+
- `reference_answer` (list of str): List of gold answers
|
| 193 |
+
- `candidate_answer` (str): Candidate answer to evaluate
|
| 194 |
+
- `question` (str): The question being evaluated
|
| 195 |
+
|
| 196 |
+
**Returns**
|
| 197 |
+
- `boolean`: True if transformer model considers candidate answer equivalent to any gold answer
|
| 198 |
|
| 199 |
```python
|
| 200 |
from qa_metrics.transformerMatcher import TransformerMatcher
|
| 201 |
|
| 202 |
+
### supports `zli12321/answer_equivalence_bert`, `zli12321/answer_equivalence_distilbert`, `zli12321/answer_equivalence_roberta`, `zli12321/answer_equivalence_distilroberta`
|
| 203 |
+
tm = TransformerMatcher("zli12321/answer_equivalence_tiny_bert")
|
|
|
|
|
|
|
| 204 |
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
```
|
| 206 |
|
| 207 |
+
### 5. LLM Integration
|
| 208 |
|
| 209 |
+
#### Method: `prompt_gpt`
|
| 210 |
+
**Parameters**
|
| 211 |
+
- `prompt` (str): The input prompt text
|
| 212 |
+
- `model_engine` (str): OpenAI model to use (e.g., 'gpt-3.5-turbo')
|
| 213 |
+
- `temperature` (float): Controls randomness (0-1)
|
| 214 |
+
- `max_tokens` (int): Maximum tokens in response
|
| 215 |
|
|
|
|
| 216 |
```python
|
| 217 |
from qa_metrics.prompt_llm import CloseLLM
|
| 218 |
+
|
| 219 |
model = CloseLLM()
|
| 220 |
model.set_openai_api_key(YOUR_OPENAI_KEY)
|
| 221 |
+
result = model.prompt_gpt(prompt=prompt, model_engine='gpt-3.5-turbo')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
```
|
| 223 |
|
| 224 |
+
#### Method: `prompt_claude`
|
| 225 |
+
**Parameters**
|
| 226 |
+
- `prompt` (str): The input prompt text
|
| 227 |
+
- `model_engine` (str): Claude model to use
|
| 228 |
+
- `anthropic_version` (str): API version
|
| 229 |
+
- `max_tokens_to_sample` (int): Maximum tokens in response
|
| 230 |
+
- `temperature` (float): Controls randomness (0-1)
|
| 231 |
+
|
| 232 |
```python
|
| 233 |
model = CloseLLM()
|
| 234 |
+
model.set_anthropic_api_key(YOUR_ANTHROPIC_KEY)
|
| 235 |
+
result = model.prompt_claude(prompt=prompt, model_engine='claude-v1')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
```
|
| 237 |
|
| 238 |
+
#### Method: `prompt`
|
| 239 |
+
**Parameters**
|
| 240 |
+
- `message` (str): The input message text
|
| 241 |
+
- `model_engine` (str): Model to use
|
| 242 |
+
- `temperature` (float): Controls randomness (0-1)
|
| 243 |
+
- `max_tokens` (int): Maximum tokens in response
|
| 244 |
+
|
| 245 |
```python
|
| 246 |
from qa_metrics.prompt_open_llm import OpenLLM
|
| 247 |
+
|
| 248 |
model = OpenLLM()
|
| 249 |
model.set_deepinfra_key(YOUR_DEEPINFRA_KEY)
|
| 250 |
+
result = model.prompt(message=prompt, model_engine='mistralai/Mixtral-8x7B-Instruct-v0.1')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
```
|
| 252 |
|
| 253 |
+
## π€ Model Hub
|
| 254 |
+
|
| 255 |
+
Our fine-tuned models are available on Huggingface:
|
| 256 |
+
- [BERT](https://huggingface.co/Zongxia/answer_equivalence_bert)
|
| 257 |
+
- [DistilRoBERTa](https://huggingface.co/Zongxia/answer_equivalence_distilroberta)
|
| 258 |
+
- [DistilBERT](https://huggingface.co/Zongxia/answer_equivalence_distilbert)
|
| 259 |
+
- [RoBERTa](https://huggingface.co/Zongxia/answer_equivalence_roberta)
|
| 260 |
+
- [Tiny-BERT](https://huggingface.co/Zongxia/answer_equivalence_tiny_bert)
|
| 261 |
+
- [RoBERTa-Large](https://huggingface.co/Zongxia/answer_equivalence_roberta-large)
|
| 262 |
+
|
| 263 |
+
## π Resources
|
| 264 |
+
|
| 265 |
+
- [Full Paper](https://arxiv.org/abs/2402.11161)
|
| 266 |
+
- [Dataset Repository](https://github.com/zli12321/Answer_Equivalence_Dataset.git)
|
| 267 |
+
- [Supported Models on Deepinfra](https://deepinfra.com/models)
|
| 268 |
+
|
| 269 |
+
## π Citation
|
| 270 |
+
|
| 271 |
```bibtex
|
| 272 |
+
@misc{li2024pedantspreciseevaluationsdiverse,
|
| 273 |
+
title={PEDANTS: Cheap but Effective and Interpretable Answer Equivalence},
|
| 274 |
author={Zongxia Li and Ishani Mondal and Yijun Liang and Huy Nghiem and Jordan Lee Boyd-Graber},
|
| 275 |
year={2024},
|
| 276 |
eprint={2402.11161},
|
| 277 |
archivePrefix={arXiv},
|
| 278 |
+
primaryClass={cs.CL},
|
| 279 |
+
url={https://arxiv.org/abs/2402.11161},
|
| 280 |
}
|
| 281 |
```
|
| 282 |
|
| 283 |
+
## π License
|
| 284 |
|
| 285 |
+
This project is licensed under the [MIT License](LICENSE.md).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
+
## π¬ Contact
|
| 288 |
|
| 289 |
+
For questions or comments, please contact: [email protected]
|