Upload main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from torchvision import datasets, models, transforms
|
| 5 |
+
from torch.utils.data import DataLoader, random_split, Dataset
|
| 6 |
+
from torch.optim import lr_scheduler
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import time
|
| 10 |
+
import copy
|
| 11 |
+
import os
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score
|
| 15 |
+
from sklearn.preprocessing import label_binarize
|
| 16 |
+
|
| 17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
+
|
| 19 |
+
root_dir = r"path"
|
| 20 |
+
data_dir = os.path.join(root_dir, 'Training')
|
| 21 |
+
save_dir = "./improved_results"
|
| 22 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 23 |
+
|
| 24 |
+
CONFIG = {
|
| 25 |
+
'model_name': 'ResNet50_Improved',
|
| 26 |
+
'batch_size': 32,
|
| 27 |
+
'lr': 0.001,
|
| 28 |
+
'epochs': 25,
|
| 29 |
+
'scheduler_step': 7,
|
| 30 |
+
'gamma': 0.1,
|
| 31 |
+
'weight_decay': 5e-4,
|
| 32 |
+
'dropout_rate': 0.6,
|
| 33 |
+
'early_stopping_patience': 5,
|
| 34 |
+
'early_stopping_min_delta': 0.001
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
train_transforms = transforms.Compose([
|
| 38 |
+
transforms.RandomResizedCrop(224, scale=(0.8, 1.0)),
|
| 39 |
+
transforms.RandomHorizontalFlip(),
|
| 40 |
+
transforms.RandomRotation(20),
|
| 41 |
+
transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.2),
|
| 42 |
+
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
|
| 43 |
+
transforms.ToTensor(),
|
| 44 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 45 |
+
])
|
| 46 |
+
|
| 47 |
+
test_transforms = transforms.Compose([
|
| 48 |
+
transforms.Resize((224, 224)),
|
| 49 |
+
transforms.ToTensor(),
|
| 50 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 51 |
+
])
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class EarlyStopping:
|
| 55 |
+
def __init__(self, patience=5, min_delta=0.001, mode='max'):
|
| 56 |
+
self.patience = patience
|
| 57 |
+
self.min_delta = min_delta
|
| 58 |
+
self.mode = mode
|
| 59 |
+
self.counter = 0
|
| 60 |
+
self.best_score = None
|
| 61 |
+
self.early_stop = False
|
| 62 |
+
|
| 63 |
+
def __call__(self, score):
|
| 64 |
+
if self.best_score is None:
|
| 65 |
+
self.best_score = score
|
| 66 |
+
return False
|
| 67 |
+
|
| 68 |
+
if self.mode == 'max':
|
| 69 |
+
if score > self.best_score + self.min_delta:
|
| 70 |
+
self.best_score = score
|
| 71 |
+
self.counter = 0
|
| 72 |
+
else:
|
| 73 |
+
self.counter += 1
|
| 74 |
+
else:
|
| 75 |
+
if score < self.best_score - self.min_delta:
|
| 76 |
+
self.best_score = score
|
| 77 |
+
self.counter = 0
|
| 78 |
+
else:
|
| 79 |
+
self.counter += 1
|
| 80 |
+
|
| 81 |
+
if self.counter >= self.patience:
|
| 82 |
+
self.early_stop = True
|
| 83 |
+
print(f"\nEarly stopping triggered! No improvement for {self.patience} epochs.")
|
| 84 |
+
return True
|
| 85 |
+
return False
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class TransformedSubset(Dataset):
|
| 89 |
+
def __init__(self, subset, transform=None):
|
| 90 |
+
self.subset = subset
|
| 91 |
+
self.transform = transform
|
| 92 |
+
|
| 93 |
+
def __getitem__(self, index):
|
| 94 |
+
x, y = self.subset[index]
|
| 95 |
+
if self.transform:
|
| 96 |
+
x = self.transform(x)
|
| 97 |
+
return x, y
|
| 98 |
+
|
| 99 |
+
def __len__(self):
|
| 100 |
+
return len(self.subset)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
base_dataset = datasets.ImageFolder(root=data_dir)
|
| 104 |
+
class_names = base_dataset.classes
|
| 105 |
+
num_classes = len(class_names)
|
| 106 |
+
|
| 107 |
+
train_size = int(0.8 * len(base_dataset))
|
| 108 |
+
test_size = len(base_dataset) - train_size
|
| 109 |
+
train_indices, test_indices = random_split(base_dataset, [train_size, test_size])
|
| 110 |
+
|
| 111 |
+
train_dataset = TransformedSubset(train_indices, transform=train_transforms)
|
| 112 |
+
test_dataset = TransformedSubset(test_indices, transform=test_transforms)
|
| 113 |
+
|
| 114 |
+
dataloaders = {
|
| 115 |
+
'train': DataLoader(train_dataset, batch_size=CONFIG['batch_size'], shuffle=True, num_workers=0),
|
| 116 |
+
'test': DataLoader(test_dataset, batch_size=CONFIG['batch_size'], shuffle=False, num_workers=0)
|
| 117 |
+
}
|
| 118 |
+
dataset_sizes = {'train': train_size, 'test': test_size}
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_model():
|
| 122 |
+
model = models.resnet50(pretrained=True)
|
| 123 |
+
num_ftrs = model.fc.in_features
|
| 124 |
+
model.fc = nn.Sequential(
|
| 125 |
+
nn.Dropout(CONFIG['dropout_rate']),
|
| 126 |
+
nn.Linear(num_ftrs, num_classes)
|
| 127 |
+
)
|
| 128 |
+
return model.to(device)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
model = get_model()
|
| 132 |
+
criterion = nn.CrossEntropyLoss()
|
| 133 |
+
optimizer = optim.Adam(
|
| 134 |
+
model.parameters(),
|
| 135 |
+
lr=CONFIG['lr'],
|
| 136 |
+
weight_decay=CONFIG['weight_decay']
|
| 137 |
+
)
|
| 138 |
+
exp_lr_scheduler = lr_scheduler.StepLR(
|
| 139 |
+
optimizer,
|
| 140 |
+
step_size=CONFIG['scheduler_step'],
|
| 141 |
+
gamma=CONFIG['gamma']
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
|
| 146 |
+
since = time.time()
|
| 147 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
| 148 |
+
best_acc = 0.0
|
| 149 |
+
history = []
|
| 150 |
+
|
| 151 |
+
early_stopping = EarlyStopping(
|
| 152 |
+
patience=CONFIG['early_stopping_patience'],
|
| 153 |
+
min_delta=CONFIG['early_stopping_min_delta'],
|
| 154 |
+
mode='max'
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
for epoch in range(num_epochs):
|
| 158 |
+
print(f'\n{"="*50}')
|
| 159 |
+
print(f'Epoch {epoch+1}/{num_epochs}')
|
| 160 |
+
print("="*50)
|
| 161 |
+
|
| 162 |
+
epoch_stats = {'Epoch': epoch+1}
|
| 163 |
+
|
| 164 |
+
for phase in ['train', 'test']:
|
| 165 |
+
if phase == 'train':
|
| 166 |
+
model.train()
|
| 167 |
+
else:
|
| 168 |
+
model.eval()
|
| 169 |
+
|
| 170 |
+
running_loss = 0.0
|
| 171 |
+
running_corrects = 0
|
| 172 |
+
|
| 173 |
+
for inputs, labels in dataloaders[phase]:
|
| 174 |
+
inputs = inputs.to(device)
|
| 175 |
+
labels = labels.to(device)
|
| 176 |
+
optimizer.zero_grad()
|
| 177 |
+
|
| 178 |
+
with torch.set_grad_enabled(phase == 'train'):
|
| 179 |
+
outputs = model(inputs)
|
| 180 |
+
_, preds = torch.max(outputs, 1)
|
| 181 |
+
loss = criterion(outputs, labels)
|
| 182 |
+
|
| 183 |
+
if phase == 'train':
|
| 184 |
+
loss.backward()
|
| 185 |
+
optimizer.step()
|
| 186 |
+
|
| 187 |
+
running_loss += loss.item() * inputs.size(0)
|
| 188 |
+
running_corrects += torch.sum(preds == labels.data)
|
| 189 |
+
|
| 190 |
+
if phase == 'train':
|
| 191 |
+
scheduler.step()
|
| 192 |
+
|
| 193 |
+
epoch_loss = running_loss / dataset_sizes[phase]
|
| 194 |
+
epoch_acc = running_corrects.double() / dataset_sizes[phase]
|
| 195 |
+
|
| 196 |
+
print(f'{phase.upper():5s} | Loss: {epoch_loss:.4f} | Acc: {epoch_acc:.4f} ({epoch_acc*100:.2f}%)')
|
| 197 |
+
|
| 198 |
+
epoch_stats[f'{phase}_loss'] = epoch_loss
|
| 199 |
+
epoch_stats[f'{phase}_acc'] = epoch_acc.item()
|
| 200 |
+
|
| 201 |
+
if phase == 'test':
|
| 202 |
+
if epoch_acc > best_acc:
|
| 203 |
+
best_acc = epoch_acc
|
| 204 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
| 205 |
+
torch.save(model.state_dict(), os.path.join(save_dir, 'best_model.pth'))
|
| 206 |
+
print(f"✅ New Record! Test Acc: {best_acc:.4f}")
|
| 207 |
+
|
| 208 |
+
if early_stopping(epoch_acc.item()):
|
| 209 |
+
print(f"\nTraining stopped (Epoch {epoch+1})")
|
| 210 |
+
model.load_state_dict(best_model_wts)
|
| 211 |
+
df = pd.DataFrame(history)
|
| 212 |
+
df.to_csv(os.path.join(save_dir, 'training_logs.csv'), index=False)
|
| 213 |
+
return model, df
|
| 214 |
+
|
| 215 |
+
history.append(epoch_stats)
|
| 216 |
+
|
| 217 |
+
time_elapsed = time.time() - since
|
| 218 |
+
print(f'\n{"="*50}')
|
| 219 |
+
print(f'Training completed: {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
|
| 220 |
+
print(f'Best Test Accuracy: {best_acc:.4f} ({best_acc*100:.2f}%)')
|
| 221 |
+
print("="*50)
|
| 222 |
+
|
| 223 |
+
model.load_state_dict(best_model_wts)
|
| 224 |
+
df = pd.DataFrame(history)
|
| 225 |
+
df.to_csv(os.path.join(save_dir, 'training_logs.csv'), index=False)
|
| 226 |
+
|
| 227 |
+
return model, df
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def evaluate_model(model, dataloader, class_names):
|
| 231 |
+
model.eval()
|
| 232 |
+
all_preds = []
|
| 233 |
+
all_labels = []
|
| 234 |
+
all_probs = []
|
| 235 |
+
|
| 236 |
+
with torch.no_grad():
|
| 237 |
+
for inputs, labels in dataloader:
|
| 238 |
+
inputs = inputs.to(device)
|
| 239 |
+
outputs = model(inputs)
|
| 240 |
+
probs = torch.softmax(outputs, dim=1)
|
| 241 |
+
_, preds = torch.max(outputs, 1)
|
| 242 |
+
|
| 243 |
+
all_preds.extend(preds.cpu().numpy())
|
| 244 |
+
all_labels.extend(labels.numpy())
|
| 245 |
+
all_probs.extend(probs.cpu().numpy())
|
| 246 |
+
|
| 247 |
+
all_preds = np.array(all_preds)
|
| 248 |
+
all_labels = np.array(all_labels)
|
| 249 |
+
all_probs = np.array(all_probs)
|
| 250 |
+
|
| 251 |
+
cm = confusion_matrix(all_labels, all_preds)
|
| 252 |
+
plt.figure(figsize=(10, 8))
|
| 253 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
|
| 254 |
+
xticklabels=class_names, yticklabels=class_names,
|
| 255 |
+
cbar_kws={'label': 'Count'})
|
| 256 |
+
plt.title('Confusion Matrix', fontsize=16, fontweight='bold')
|
| 257 |
+
plt.ylabel('True Class', fontsize=12)
|
| 258 |
+
plt.xlabel('Predicted Class', fontsize=12)
|
| 259 |
+
plt.tight_layout()
|
| 260 |
+
plt.savefig(os.path.join(save_dir, 'confusion_matrix.png'), dpi=300)
|
| 261 |
+
plt.show()
|
| 262 |
+
|
| 263 |
+
print("\n" + "="*60)
|
| 264 |
+
print("DETAILED PERFORMANCE REPORT")
|
| 265 |
+
print("="*60)
|
| 266 |
+
report = classification_report(all_labels, all_preds,
|
| 267 |
+
target_names=class_names,
|
| 268 |
+
digits=4)
|
| 269 |
+
print(report)
|
| 270 |
+
|
| 271 |
+
report_dict = classification_report(all_labels, all_preds,
|
| 272 |
+
target_names=class_names,
|
| 273 |
+
output_dict=True)
|
| 274 |
+
|
| 275 |
+
metrics = ['precision', 'recall', 'f1-score']
|
| 276 |
+
class_metrics = {metric: [] for metric in metrics}
|
| 277 |
+
|
| 278 |
+
for class_name in class_names:
|
| 279 |
+
for metric in metrics:
|
| 280 |
+
class_metrics[metric].append(report_dict[class_name][metric])
|
| 281 |
+
|
| 282 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 283 |
+
x = np.arange(len(class_names))
|
| 284 |
+
width = 0.25
|
| 285 |
+
|
| 286 |
+
for i, metric in enumerate(metrics):
|
| 287 |
+
ax.bar(x + i*width, class_metrics[metric], width,
|
| 288 |
+
label=metric.capitalize(), alpha=0.8)
|
| 289 |
+
|
| 290 |
+
ax.set_xlabel('Classes', fontsize=12)
|
| 291 |
+
ax.set_ylabel('Score', fontsize=12)
|
| 292 |
+
ax.set_title('Per-Class Performance Metrics', fontsize=14, fontweight='bold')
|
| 293 |
+
ax.set_xticks(x + width)
|
| 294 |
+
ax.set_xticklabels(class_names, rotation=45, ha='right')
|
| 295 |
+
ax.legend()
|
| 296 |
+
ax.set_ylim([0, 1.05])
|
| 297 |
+
ax.grid(axis='y', alpha=0.3)
|
| 298 |
+
plt.tight_layout()
|
| 299 |
+
plt.savefig(os.path.join(save_dir, 'class_metrics.png'), dpi=300)
|
| 300 |
+
plt.show()
|
| 301 |
+
|
| 302 |
+
try:
|
| 303 |
+
y_bin = label_binarize(all_labels, classes=range(num_classes))
|
| 304 |
+
auc_scores = []
|
| 305 |
+
for i in range(num_classes):
|
| 306 |
+
auc = roc_auc_score(y_bin[:, i], all_probs[:, i])
|
| 307 |
+
auc_scores.append(auc)
|
| 308 |
+
print(f"ROC-AUC ({class_names[i]}): {auc:.4f}")
|
| 309 |
+
print(f"Mean ROC-AUC: {np.mean(auc_scores):.4f}")
|
| 310 |
+
except:
|
| 311 |
+
print("ROC-AUC could not be calculated")
|
| 312 |
+
|
| 313 |
+
return cm, report
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def plot_training_results(df):
|
| 317 |
+
sns.set_style("whitegrid")
|
| 318 |
+
fig, axes = plt.subplots(1, 2, figsize=(15, 5))
|
| 319 |
+
|
| 320 |
+
axes[0].plot(df['Epoch'], df['train_loss'], 'o-', label='Train Loss', linewidth=2, markersize=6)
|
| 321 |
+
axes[0].plot(df['Epoch'], df['test_loss'], 's-', label='Test Loss', linewidth=2, markersize=6)
|
| 322 |
+
axes[0].set_title('Loss Evolution', fontsize=14, fontweight='bold')
|
| 323 |
+
axes[0].set_xlabel('Epoch', fontsize=12)
|
| 324 |
+
axes[0].set_ylabel('Loss', fontsize=12)
|
| 325 |
+
axes[0].legend(fontsize=11)
|
| 326 |
+
axes[0].grid(True, alpha=0.3)
|
| 327 |
+
|
| 328 |
+
axes[1].plot(df['Epoch'], df['train_acc'], 'o-', label='Train Acc', linewidth=2, markersize=6, color='green')
|
| 329 |
+
axes[1].plot(df['Epoch'], df['test_acc'], 's-', label='Test Acc', linewidth=2, markersize=6, color='orange')
|
| 330 |
+
axes[1].set_title('Accuracy Evolution', fontsize=14, fontweight='bold')
|
| 331 |
+
axes[1].set_xlabel('Epoch', fontsize=12)
|
| 332 |
+
axes[1].set_ylabel('Accuracy', fontsize=12)
|
| 333 |
+
axes[1].legend(fontsize=11)
|
| 334 |
+
axes[1].grid(True, alpha=0.3)
|
| 335 |
+
axes[1].set_ylim([0, 1.05])
|
| 336 |
+
|
| 337 |
+
plt.tight_layout()
|
| 338 |
+
plt.savefig(os.path.join(save_dir, 'training_curves.png'), dpi=300)
|
| 339 |
+
plt.show()
|
| 340 |
+
|
| 341 |
+
df['overfit_gap'] = df['train_acc'] - df['test_acc']
|
| 342 |
+
print(f"\nOverfitting Analysis:")
|
| 343 |
+
print(f"Mean Train-Test Gap: {df['overfit_gap'].mean():.4f}")
|
| 344 |
+
print(f"Max Gap: {df['overfit_gap'].max():.4f} (Epoch {df.loc[df['overfit_gap'].idxmax(), 'Epoch']:.0f})")
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
print("\nStarting training...\n")
|
| 348 |
+
model_ft, logs = train_model(
|
| 349 |
+
model, criterion, optimizer, exp_lr_scheduler,
|
| 350 |
+
num_epochs=CONFIG['epochs']
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
print("\nVisualizing results...")
|
| 354 |
+
plot_training_results(logs)
|
| 355 |
+
|
| 356 |
+
print("\nPerforming detailed evaluation...")
|
| 357 |
+
cm, report = evaluate_model(model_ft, dataloaders['test'], class_names)
|
| 358 |
+
|
| 359 |
+
print("\n" + "="*60)
|
| 360 |
+
print("SUMMARY REPORT")
|
| 361 |
+
print("="*60)
|
| 362 |
+
print(f"Model: {CONFIG['model_name']}")
|
| 363 |
+
print(f"Total Epochs: {len(logs)}")
|
| 364 |
+
print(f"Best Test Accuracy: {logs['test_acc'].max():.4f} ({logs['test_acc'].max()*100:.2f}%)")
|
| 365 |
+
print(f"Final Test Accuracy: {logs['test_acc'].iloc[-1]:.4f}")
|
| 366 |
+
print(f"Final Train Accuracy: {logs['train_acc'].iloc[-1]:.4f}")
|
| 367 |
+
print(f"Overfitting Gap: {logs['train_acc'].iloc[-1] - logs['test_acc'].iloc[-1]:.4f}")
|
| 368 |
+
print(f"\nAll results saved to '{save_dir}'")
|
| 369 |
+
print("="*60)
|