Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,739 Bytes
3e8fe6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from PIL import Image
from datasets import load_dataset
from torchvision import transforms
import random
import torch
Image.MAX_IMAGE_PIXELS = None
def multiple_16(num: float):
return int(round(num / 16) * 16)
def get_random_resolution(min_size=512, max_size=1280, multiple=16):
resolution = random.randint(min_size // multiple, max_size // multiple) * multiple
return resolution
def load_image_safely(image_path, size):
try:
image = Image.open(image_path).convert("RGB")
return image
except Exception as e:
print("file error: "+image_path)
with open("failed_images.txt", "a") as f:
f.write(f"{image_path}\n")
return Image.new("RGB", (size, size), (255, 255, 255))
def make_train_dataset(args, tokenizer, accelerator=None):
if args.train_data_dir is not None:
print("load_data")
dataset = load_dataset('json', data_files=args.train_data_dir)
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
caption_column = args.caption_column
target_column = args.target_column
if args.subject_column is not None:
subject_columns = args.subject_column.split(",")
if args.spatial_column is not None:
spatial_columns= args.spatial_column.split(",")
size = args.cond_size
noise_size = get_random_resolution(max_size=args.noise_size) # maybe 768 or higher
subject_cond_train_transforms = transforms.Compose(
[
transforms.Lambda(lambda img: img.resize((
multiple_16(size * img.size[0] / max(img.size)),
multiple_16(size * img.size[1] / max(img.size))
), resample=Image.BILINEAR)),
transforms.RandomHorizontalFlip(p=0.7),
transforms.RandomRotation(degrees=20),
transforms.Lambda(lambda img: transforms.Pad(
padding=(
int((size - img.size[0]) / 2),
int((size - img.size[1]) / 2),
int((size - img.size[0]) / 2),
int((size - img.size[1]) / 2)
),
fill=0
)(img)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
cond_train_transforms = transforms.Compose(
[
transforms.Resize((size, size), interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop((size, size)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def train_transforms(image, noise_size):
train_transforms_ = transforms.Compose(
[
transforms.Lambda(lambda img: img.resize((
multiple_16(noise_size * img.size[0] / max(img.size)),
multiple_16(noise_size * img.size[1] / max(img.size))
), resample=Image.BILINEAR)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
transformed_image = train_transforms_(image)
return transformed_image
def load_and_transform_cond_images(images):
transformed_images = [cond_train_transforms(image) for image in images]
concatenated_image = torch.cat(transformed_images, dim=1)
return concatenated_image
def load_and_transform_subject_images(images):
transformed_images = [subject_cond_train_transforms(image) for image in images]
concatenated_image = torch.cat(transformed_images, dim=1)
return concatenated_image
tokenizer_clip = tokenizer[0]
tokenizer_t5 = tokenizer[1]
def tokenize_prompt_clip_t5(examples):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
if random.random() < 0.1:
captions.append(" ") # 将文本设为空
else:
captions.append(caption)
elif isinstance(caption, list):
# take a random caption if there are multiple
if random.random() < 0.1:
captions.append(" ")
else:
captions.append(random.choice(caption))
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
text_inputs = tokenizer_clip(
captions,
padding="max_length",
max_length=77,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids_1 = text_inputs.input_ids
text_inputs = tokenizer_t5(
captions,
padding="max_length",
max_length=512,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids_2 = text_inputs.input_ids
return text_input_ids_1, text_input_ids_2
def preprocess_train(examples):
_examples = {}
if args.subject_column is not None:
subject_images = [[load_image_safely(examples[column][i], args.cond_size) for column in subject_columns] for i in range(len(examples[target_column]))]
_examples["subject_pixel_values"] = [load_and_transform_subject_images(subject) for subject in subject_images]
if args.spatial_column is not None:
spatial_images = [[load_image_safely(examples[column][i], args.cond_size) for column in spatial_columns] for i in range(len(examples[target_column]))]
_examples["cond_pixel_values"] = [load_and_transform_cond_images(spatial) for spatial in spatial_images]
target_images = [load_image_safely(image_path, args.cond_size) for image_path in examples[target_column]]
_examples["pixel_values"] = [train_transforms(image, noise_size) for image in target_images]
_examples["token_ids_clip"], _examples["token_ids_t5"] = tokenize_prompt_clip_t5(examples)
return _examples
if accelerator is not None:
with accelerator.main_process_first():
train_dataset = dataset["train"].with_transform(preprocess_train)
else:
train_dataset = dataset["train"].with_transform(preprocess_train)
return train_dataset
def collate_fn(examples):
if examples[0].get("cond_pixel_values") is not None:
cond_pixel_values = torch.stack([example["cond_pixel_values"] for example in examples])
cond_pixel_values = cond_pixel_values.to(memory_format=torch.contiguous_format).float()
else:
cond_pixel_values = None
if examples[0].get("subject_pixel_values") is not None:
subject_pixel_values = torch.stack([example["subject_pixel_values"] for example in examples])
subject_pixel_values = subject_pixel_values.to(memory_format=torch.contiguous_format).float()
else:
subject_pixel_values = None
target_pixel_values = torch.stack([example["pixel_values"] for example in examples])
target_pixel_values = target_pixel_values.to(memory_format=torch.contiguous_format).float()
token_ids_clip = torch.stack([torch.tensor(example["token_ids_clip"]) for example in examples])
token_ids_t5 = torch.stack([torch.tensor(example["token_ids_t5"]) for example in examples])
return {
"cond_pixel_values": cond_pixel_values,
"subject_pixel_values": subject_pixel_values,
"pixel_values": target_pixel_values,
"text_ids_1": token_ids_clip,
"text_ids_2": token_ids_t5,
} |