import gradio as gr import os import requests import time from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import paddlehub as hub #HF_TOKEN = os.environ["HF_TOKEN"] HF_TOKEN = os.environ.get("HF_TOKEN") or True model = hub.Module(name='ernie_vilg') def get_ernie_vilg(text_prompts): results = model.generate_image(text_prompts=text_prompts, style="油画", visualization=False) return results[0] sd_inf = gr.Interface.load(name="spaces/stabilityai/stable-diffusion", use_auth_token=HF_TOKEN) nllb_model_name = 'facebook/nllb-200-distilled-600M' nllb_model = AutoModelForSeq2SeqLM.from_pretrained(nllb_model_name) nllb_tokenizer = AutoTokenizer.from_pretrained(nllb_model_name) def get_chinese_translation(in_language_first, in_language_second, text): print("********Inside get_chinese_translation ********") print(f"text is :{text}, source language is : {in_language_first}, target language is : {in_language_second} ") translator = pipeline('translation', model=nllb_model, tokenizer=nllb_tokenizer, src_lang=in_language_first, tgt_lang=in_language_second) output = translator(text, max_length=400) print(f"initial output is:{output}") output = output[0]['translation_text'] print(f"output is:{output}") return output def get_sd(translated_txt, samples, steps, scale, seed): print("******** Inside get_SD ********") print(f"translated_txt is : {translated_txt}") print(f"sd_inf is: {sd_inf}") sd_img_gallery = sd_inf(translated_txt, samples, steps, scale, seed, fn_index=1)[0] #(fn_index=1) return sd_img_gallery #[0] demo = gr.Blocks() with demo: gr.Markdown("