from mcp.server.fastmcp import FastMCP from typing import dict, list, Optional import os # Placeholder for configuration constants and dependencies (e.g., Tesseract, pdf2image) from config import CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE # --- Initialize the FastMCP Server --- # The server is focused on Zoho CRM actions [12, 13]. mcp = FastMCP("ZohoCRMAgent") # --- Conceptual Zoho API Handling Functions (Internal Logic) --- # NOTE: These functions simulate the logic that would use the existing CLIENT_ID, # CLIENT_SECRET, and REFRESH_TOKEN to make authenticated API calls to the # new API_BASE (Zoho CRM /crm/v2) [5, 6]. def _get_valid_token_headers() -> dict: """Internal function to ensure a valid Zoho access token is available.""" # This logic reuses the pattern of handling OAuth and token refresh # from the original zoho_client.py [1, 5, 6]. # In a real implementation, it would use the stored REFRESH_TOKEN to get a new Access Token. return {"Authorization": "Zoho-oauthtoken "} # --- MCP Tools for Zoho CRM CRUD Operations (Required actions) --- @mcp.tool() def authenticate_zoho() -> str: """ Performs the OAuth 2.0 flow to ensure the agent has a valid Zoho CRM access token for subsequent API calls [7, 14]. """ # Placeholder for the actual OAuth flow [6]. return "Zoho CRM access token successfully refreshed." @mcp.tool() def create_record(module_name: str, record_data: dict) -> str: """ Creates a new record (e.g., Contact, Lead, Account, Deal) in the specified Zoho CRM module [6, 12]. Example: create_record("Contacts", {"Last_Name": "Alice", "Email": "alice@corp.com"}) """ # This tool fulfills the 'create user/contact' requirement [12, 13]. headers = _get_valid_token_headers() # Logic: POST to f"{API_BASE}/{module_name}" with record_data if module_name in ["Contacts", "Leads", "Accounts", "Deals"]: return f"Successfully created a new record in {module_name}." else: return f"Error: Module {module_name} is not supported or recognized." @mcp.tool() def get_records(module_name: str, page: int=1, per_page: int=200) -> list: """ Fetches records from a CRM module based on module name, used for searches or getting lists [6, 15]. """ headers = _get_valid_token_headers() # Logic: GET from f"{API_BASE}/{module_name}" return [f"List of records retrieved from {module_name} module on page {page}."] @mcp.tool() def update_record(module_name: str, record_id: str, data: dict) -> str: """ Updates fields on an existing record identified by module and ID [6, 10, 15]. """ headers = _get_valid_token_headers() # Logic: PUT to f"{API_BASE}/{module_name}/{record_id}" return f"Record {record_id} in {module_name} updated successfully." @mcp.tool() def delete_record(module_name: str, record_id: str) -> str: """ Deletes a record from the specified CRM module [6, 10, 15]. """ headers = _get_valid_token_headers() # Logic: DELETE to f"{API_BASE}/{module_name}/{record_id}" return f"Record {record_id} in {module_name} deleted." # --- MCP Tool for File Processing (Incorporating old ai_engine logic) --- # This tool handles the requirement for accepting uploaded images or PDFs [13, 16, 17]. # NOTE: The FastMCP framework handles file references automatically, passing # a path or URL to the tool function [10, 18]. @mcp.tool() def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict: """ Analyzes an attached PDF or image using OCR and AI, extracts structured data, and returns fields ready for Zoho entry [8-10]. The internal process reuses perform_ocr and extract_intelligent_json logic [1, 9]. """ # 1. OCR Step (Uses Tesseract/pdf2image from existing pipeline) [1, 9]. # raw_text = perform_ocr(file_path) # 2. AI Parsing Step (Uses Gemini to parse text into JSON) [1, 11]. # extracted_data = gemini_parse_json(raw_text) # 3. If successful, the LLM will decide whether to call 'create_record' next. return { "status": "success", "file": os.path.basename(file_path), "extracted_data": f"Structured data extracted from {target_module} document." }