Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import numpy as np | |
| import pytest | |
| import torch | |
| from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE | |
| class Testnms: | |
| def test_nms_allclose(self, device): | |
| from mmcv.ops import nms | |
| np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0], | |
| [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]], | |
| dtype=np.float32) | |
| np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32) | |
| np_inds = np.array([1, 0, 3]) | |
| np_dets = np.array([[3.0, 6.0, 9.0, 11.0, 0.9], | |
| [6.0, 3.0, 8.0, 7.0, 0.6], | |
| [1.0, 4.0, 13.0, 7.0, 0.2]]) | |
| boxes = torch.from_numpy(np_boxes) | |
| scores = torch.from_numpy(np_scores) | |
| dets, inds = nms(boxes, scores, iou_threshold=0.3, offset=0) | |
| assert np.allclose(dets, np_dets) # test cpu | |
| assert np.allclose(inds, np_inds) # test cpu | |
| dets, inds = nms( | |
| boxes.to(device), scores.to(device), iou_threshold=0.3, offset=0) | |
| assert np.allclose(dets.cpu().numpy(), np_dets) # test gpu | |
| assert np.allclose(inds.cpu().numpy(), np_inds) # test gpu | |
| def test_softnms_allclose(self): | |
| if not torch.cuda.is_available(): | |
| return | |
| from mmcv.ops import soft_nms | |
| np_boxes = np.array([[6.0, 3.0, 8.0, 7.0], [3.0, 6.0, 9.0, 11.0], | |
| [3.0, 7.0, 10.0, 12.0], [1.0, 4.0, 13.0, 7.0]], | |
| dtype=np.float32) | |
| np_scores = np.array([0.6, 0.9, 0.7, 0.2], dtype=np.float32) | |
| np_output = { | |
| 'linear': { | |
| 'dets': | |
| np.array( | |
| [[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.6], | |
| [3., 7., 10., 12., 0.29024392], [1., 4., 13., 7., 0.2]], | |
| dtype=np.float32), | |
| 'inds': | |
| np.array([1, 0, 2, 3], dtype=np.int64) | |
| }, | |
| 'gaussian': { | |
| 'dets': | |
| np.array([[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.59630775], | |
| [3., 7., 10., 12., 0.35275510], | |
| [1., 4., 13., 7., 0.18650459]], | |
| dtype=np.float32), | |
| 'inds': | |
| np.array([1, 0, 2, 3], dtype=np.int64) | |
| }, | |
| 'naive': { | |
| 'dets': | |
| np.array([[3., 6., 9., 11., 0.9], [6., 3., 8., 7., 0.6], | |
| [1., 4., 13., 7., 0.2]], | |
| dtype=np.float32), | |
| 'inds': | |
| np.array([1, 0, 3], dtype=np.int64) | |
| } | |
| } | |
| boxes = torch.from_numpy(np_boxes) | |
| scores = torch.from_numpy(np_scores) | |
| configs = [[0.3, 0.5, 0.01, 'linear'], [0.3, 0.5, 0.01, 'gaussian'], | |
| [0.3, 0.5, 0.01, 'naive']] | |
| for iou, sig, mscore, m in configs: | |
| dets, inds = soft_nms( | |
| boxes, | |
| scores, | |
| iou_threshold=iou, | |
| sigma=sig, | |
| min_score=mscore, | |
| method=m) | |
| assert np.allclose(dets.cpu().numpy(), np_output[m]['dets']) | |
| assert np.allclose(inds.cpu().numpy(), np_output[m]['inds']) | |
| if torch.__version__ != 'parrots': | |
| boxes = boxes.cuda() | |
| scores = scores.cuda() | |
| for iou, sig, mscore, m in configs: | |
| dets, inds = soft_nms( | |
| boxes, | |
| scores, | |
| iou_threshold=iou, | |
| sigma=sig, | |
| min_score=mscore, | |
| method=m) | |
| assert np.allclose(dets.cpu().numpy(), np_output[m]['dets']) | |
| assert np.allclose(inds.cpu().numpy(), np_output[m]['inds']) | |
| def test_nms_match(self): | |
| if not torch.cuda.is_available(): | |
| return | |
| from mmcv.ops import nms, nms_match | |
| iou_thr = 0.6 | |
| # empty input | |
| empty_dets = np.array([]) | |
| assert len(nms_match(empty_dets, iou_thr)) == 0 | |
| # non empty ndarray input | |
| np_dets = np.array( | |
| [[49.1, 32.4, 51.0, 35.9, 0.9], [49.3, 32.9, 51.0, 35.3, 0.9], | |
| [35.3, 11.5, 39.9, 14.5, 0.4], [35.2, 11.7, 39.7, 15.7, 0.3]], | |
| dtype=np.float32) | |
| np_groups = nms_match(np_dets, iou_thr) | |
| assert isinstance(np_groups[0], np.ndarray) | |
| assert len(np_groups) == 2 | |
| tensor_dets = torch.from_numpy(np_dets) | |
| boxes = tensor_dets[:, :4] | |
| scores = tensor_dets[:, 4] | |
| nms_keep_inds = nms(boxes.contiguous(), scores.contiguous(), | |
| iou_thr)[1] | |
| assert {g[0].item() for g in np_groups} == set(nms_keep_inds.tolist()) | |
| # non empty tensor input | |
| tensor_dets = torch.from_numpy(np_dets) | |
| tensor_groups = nms_match(tensor_dets, iou_thr) | |
| assert isinstance(tensor_groups[0], torch.Tensor) | |
| for i in range(len(tensor_groups)): | |
| assert np.equal(tensor_groups[i].numpy(), np_groups[i]).all() | |
| # input of wrong shape | |
| wrong_dets = np.zeros((2, 3)) | |
| with pytest.raises(AssertionError): | |
| nms_match(wrong_dets, iou_thr) | |
| def test_batched_nms(self): | |
| import mmcv | |
| from mmcv.ops import batched_nms | |
| results = mmcv.load('./tests/data/batched_nms_data.pkl') | |
| nms_max_num = 100 | |
| nms_cfg = dict( | |
| type='nms', | |
| iou_threshold=0.7, | |
| score_threshold=0.5, | |
| max_num=nms_max_num) | |
| boxes, keep = batched_nms( | |
| torch.from_numpy(results['boxes']), | |
| torch.from_numpy(results['scores']), | |
| torch.from_numpy(results['idxs']), | |
| nms_cfg, | |
| class_agnostic=False) | |
| nms_cfg.update(split_thr=100) | |
| seq_boxes, seq_keep = batched_nms( | |
| torch.from_numpy(results['boxes']), | |
| torch.from_numpy(results['scores']), | |
| torch.from_numpy(results['idxs']), | |
| nms_cfg, | |
| class_agnostic=False) | |
| assert torch.equal(keep, seq_keep) | |
| assert torch.equal(boxes, seq_boxes) | |
| assert torch.equal(keep, | |
| torch.from_numpy(results['keep'][:nms_max_num])) | |
| nms_cfg = dict(type='soft_nms', iou_threshold=0.7) | |
| boxes, keep = batched_nms( | |
| torch.from_numpy(results['boxes']), | |
| torch.from_numpy(results['scores']), | |
| torch.from_numpy(results['idxs']), | |
| nms_cfg, | |
| class_agnostic=False) | |
| nms_cfg.update(split_thr=100) | |
| seq_boxes, seq_keep = batched_nms( | |
| torch.from_numpy(results['boxes']), | |
| torch.from_numpy(results['scores']), | |
| torch.from_numpy(results['idxs']), | |
| nms_cfg, | |
| class_agnostic=False) | |
| assert torch.equal(keep, seq_keep) | |
| assert torch.equal(boxes, seq_boxes) | |
| # test skip nms when `nms_cfg` is None | |
| seq_boxes, seq_keep = batched_nms( | |
| torch.from_numpy(results['boxes']), | |
| torch.from_numpy(results['scores']), | |
| torch.from_numpy(results['idxs']), | |
| None, | |
| class_agnostic=False) | |
| assert len(seq_keep) == len(results['boxes']) | |
| # assert score is descending order | |
| assert ((seq_boxes[:, -1][1:] - seq_boxes[:, -1][:-1]) < 0).all() | |