Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import pytest | |
| import torch | |
| from mmcv.cnn.bricks import ContextBlock | |
| def test_context_block(): | |
| with pytest.raises(AssertionError): | |
| # pooling_type should be in ['att', 'avg'] | |
| ContextBlock(16, 1. / 4, pooling_type='unsupport_type') | |
| with pytest.raises(AssertionError): | |
| # fusion_types should be of type list or tuple | |
| ContextBlock(16, 1. / 4, fusion_types='unsupport_type') | |
| with pytest.raises(AssertionError): | |
| # fusion_types should be in ['channel_add', 'channel_mul'] | |
| ContextBlock(16, 1. / 4, fusion_types=('unsupport_type', )) | |
| # test pooling_type='att' | |
| imgs = torch.randn(2, 16, 20, 20) | |
| context_block = ContextBlock(16, 1. / 4, pooling_type='att') | |
| out = context_block(imgs) | |
| assert context_block.conv_mask.in_channels == 16 | |
| assert context_block.conv_mask.out_channels == 1 | |
| assert out.shape == imgs.shape | |
| # test pooling_type='avg' | |
| imgs = torch.randn(2, 16, 20, 20) | |
| context_block = ContextBlock(16, 1. / 4, pooling_type='avg') | |
| out = context_block(imgs) | |
| assert hasattr(context_block, 'avg_pool') | |
| assert out.shape == imgs.shape | |
| # test fusion_types=('channel_add',) | |
| imgs = torch.randn(2, 16, 20, 20) | |
| context_block = ContextBlock(16, 1. / 4, fusion_types=('channel_add', )) | |
| out = context_block(imgs) | |
| assert context_block.channel_add_conv is not None | |
| assert context_block.channel_mul_conv is None | |
| assert out.shape == imgs.shape | |
| # test fusion_types=('channel_mul',) | |
| imgs = torch.randn(2, 16, 20, 20) | |
| context_block = ContextBlock(16, 1. / 4, fusion_types=('channel_mul', )) | |
| out = context_block(imgs) | |
| assert context_block.channel_add_conv is None | |
| assert context_block.channel_mul_conv is not None | |
| assert out.shape == imgs.shape | |
| # test fusion_types=('channel_add', 'channel_mul') | |
| imgs = torch.randn(2, 16, 20, 20) | |
| context_block = ContextBlock( | |
| 16, 1. / 4, fusion_types=('channel_add', 'channel_mul')) | |
| out = context_block(imgs) | |
| assert context_block.channel_add_conv is not None | |
| assert context_block.channel_mul_conv is not None | |
| assert out.shape == imgs.shape | |