Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import soundfile as sf | |
| import numpy as np | |
| import tempfile | |
| import torchaudio | |
| from transformers import AutoModel | |
| # Load ASR Model | |
| def load_model(): | |
| return AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True) | |
| model = load_model() | |
| def process_audio(audio, language, decoding_method): | |
| if isinstance(audio, tuple): # Recorded audio | |
| sample_rate, data = audio | |
| temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") | |
| sf.write(temp_wav.name, data, sample_rate) | |
| audio_path = temp_wav.name | |
| else: # Uploaded file | |
| audio_path = audio | |
| # Load and resample audio | |
| wav, sr = torchaudio.load(audio_path) | |
| target_sample_rate = 16000 | |
| if sr != target_sample_rate: | |
| resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate) | |
| wav = resampler(wav) | |
| # Perform ASR with selected decoding method | |
| transcription = model(wav, language, decoding_method) | |
| return transcription | |
| iface = gr.Interface( | |
| fn=process_audio, | |
| inputs=[ | |
| gr.Audio(source="microphone", type="numpy"), | |
| gr.Audio(source="upload"), | |
| gr.Dropdown(["hi", "ta", "bn", "mr", "te", "gu", "kn", "ml", "pa", "ur"], label="Select Language"), | |
| gr.Radio(["ctc", "rnnt"], label="Decoding Method") | |
| ], | |
| outputs="text", | |
| title="Multilingual ASR with Indic-Conformer", | |
| description="Record or upload an audio file, select a language and decoding method, and transcribe it using the AI4Bharat Indic-Conformer model." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |