Update app.py
Browse files
app.py
CHANGED
|
@@ -2,43 +2,54 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
| 5 |
-
from PIL import Image
|
| 6 |
from ultralytics import YOLO
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
model_path = "best.pt"
|
| 10 |
model = YOLO(model_path)
|
| 11 |
|
| 12 |
-
def
|
| 13 |
-
|
| 14 |
-
image =
|
| 15 |
|
| 16 |
-
|
| 17 |
-
image =
|
| 18 |
-
image =
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
width =
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
image =
|
| 25 |
|
| 26 |
return image
|
| 27 |
|
| 28 |
-
|
| 29 |
def imageRotation(image):
|
| 30 |
-
"""Dummy function for
|
| 31 |
return image
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
def
|
| 35 |
-
|
| 36 |
-
image = np.array(image)
|
| 37 |
-
results = model(image, conf=0.85)
|
| 38 |
|
| 39 |
-
|
|
|
|
| 40 |
labels = []
|
| 41 |
-
|
| 42 |
|
| 43 |
for result in results:
|
| 44 |
for box in result.boxes:
|
|
@@ -48,71 +59,43 @@ def detect_document(image):
|
|
| 48 |
class_name = model.names[cls]
|
| 49 |
|
| 50 |
detected_classes.add(class_name)
|
| 51 |
-
|
| 52 |
-
labels.append(label)
|
| 53 |
-
bounding_boxes.append((x1, y1, x2, y2, class_name, conf)) # Store bounding box with class and confidence
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
possible_classes = {"front", "back"}
|
| 59 |
missing_classes = possible_classes - detected_classes
|
| 60 |
if missing_classes:
|
| 61 |
labels.append(f"Missing: {', '.join(missing_classes)}")
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def crop_image(image, bounding_boxes):
|
| 67 |
-
"""Crops detected bounding boxes from the image."""
|
| 68 |
-
cropped_images = {}
|
| 69 |
-
image = np.array(image)
|
| 70 |
-
|
| 71 |
-
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
|
| 72 |
-
cropped = image[y1:y2, x1:x2]
|
| 73 |
-
cropped_images[class_name] = Image.fromarray(cropped)
|
| 74 |
-
|
| 75 |
-
return cropped_images
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
def vision_ai_api(image, doc_type):
|
| 79 |
-
"""Dummy API call for Vision AI, returns a fake JSON response."""
|
| 80 |
-
return {
|
| 81 |
-
"document_type": doc_type,
|
| 82 |
-
"extracted_text": "Dummy OCR result for " + doc_type,
|
| 83 |
-
"confidence": 0.99
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
# ---------------- Prediction Function ---------------- #
|
| 87 |
-
def predict(image):
|
| 88 |
-
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
|
| 89 |
-
processed_image = preprocessing(image)
|
| 90 |
-
rotated_image = imageRotation(processed_image)
|
| 91 |
-
detected_image, labels, bounding_boxes = detect_document(rotated_image)
|
| 92 |
-
|
| 93 |
-
cropped_images = crop_image(rotated_image, bounding_boxes)
|
| 94 |
-
|
| 95 |
-
# Call Vision AI separately for front and back if detected
|
| 96 |
-
front_result, back_result = None, None
|
| 97 |
-
if "front" in cropped_images:
|
| 98 |
-
front_result = vision_ai_api(cropped_images["front"], "front")
|
| 99 |
-
if "back" in cropped_images:
|
| 100 |
-
back_result = vision_ai_api(cropped_images["back"], "back")
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
api_results = {
|
| 104 |
-
"front": front_result,
|
| 105 |
-
"back": back_result
|
| 106 |
-
}
|
| 107 |
|
| 108 |
-
|
|
|
|
| 109 |
|
|
|
|
| 110 |
|
|
|
|
| 111 |
iface = gr.Interface(
|
| 112 |
fn=predict,
|
| 113 |
inputs="image",
|
| 114 |
-
outputs=["image", "text", "
|
| 115 |
-
title="License Field Detection (Front & Back Card)"
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
iface.launch()
|
|
|
|
| 2 |
import torch
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
from ultralytics import YOLO
|
| 7 |
+
import json
|
| 8 |
|
| 9 |
|
| 10 |
model_path = "best.pt"
|
| 11 |
model = YOLO(model_path)
|
| 12 |
|
| 13 |
+
def preprocess_image(image):
|
| 14 |
+
"""Apply enhancement filters and resize image before detection."""
|
| 15 |
+
image = np.array(image)
|
| 16 |
|
| 17 |
+
|
| 18 |
+
image = cv2.convertScaleAbs(image, alpha=0.8, beta=0) # Brightness reduction
|
| 19 |
+
image = cv2.GaussianBlur(image, (3, 3), 0) # Denoising
|
| 20 |
+
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) # Sharpening
|
| 21 |
+
image = cv2.filter2D(image, -1, kernel)
|
| 22 |
|
| 23 |
+
|
| 24 |
+
height, width = image.shape[:2]
|
| 25 |
+
new_width = 800
|
| 26 |
+
new_height = int((new_width / width) * height)
|
| 27 |
+
image = cv2.resize(image, (new_width, new_height))
|
| 28 |
|
| 29 |
return image
|
| 30 |
|
|
|
|
| 31 |
def imageRotation(image):
|
| 32 |
+
"""Dummy function for now."""
|
| 33 |
return image
|
| 34 |
|
| 35 |
+
def vision_ai_api(image, label):
|
| 36 |
+
"""Dummy function simulating API call. Returns dummy JSON response."""
|
| 37 |
+
return {
|
| 38 |
+
"label": label,
|
| 39 |
+
"extracted_data": {
|
| 40 |
+
"name": "John Doe",
|
| 41 |
+
"dob": "01-01-1990",
|
| 42 |
+
"id_number": "1234567890"
|
| 43 |
+
}
|
| 44 |
+
}
|
| 45 |
|
| 46 |
+
def predict(image):
|
| 47 |
+
image = preprocess_image(image) # Apply preprocessing
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
results = model(image, conf=0.85)
|
| 50 |
+
detected_classes = set()
|
| 51 |
labels = []
|
| 52 |
+
cropped_images = {}
|
| 53 |
|
| 54 |
for result in results:
|
| 55 |
for box in result.boxes:
|
|
|
|
| 59 |
class_name = model.names[cls]
|
| 60 |
|
| 61 |
detected_classes.add(class_name)
|
| 62 |
+
labels.append(f"{class_name} {conf:.2f}")
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# Crop detected region
|
| 65 |
+
cropped = image[y1:y2, x1:x2]
|
| 66 |
+
cropped_pil = Image.fromarray(cropped)
|
| 67 |
|
| 68 |
+
# Call Vision AI API separately for front & back
|
| 69 |
+
api_response = vision_ai_api(cropped_pil, class_name)
|
| 70 |
+
|
| 71 |
+
# Store cropped images & API response
|
| 72 |
+
cropped_images[class_name] = {
|
| 73 |
+
"image": cropped_pil,
|
| 74 |
+
"api_response": json.dumps(api_response, indent=4)
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
# Identify missing classes
|
| 78 |
possible_classes = {"front", "back"}
|
| 79 |
missing_classes = possible_classes - detected_classes
|
| 80 |
if missing_classes:
|
| 81 |
labels.append(f"Missing: {', '.join(missing_classes)}")
|
| 82 |
|
| 83 |
+
# Prepare Gradio outputs (separate front & back images and responses)
|
| 84 |
+
front_image = cropped_images.get("front", {}).get("image", None)
|
| 85 |
+
back_image = cropped_images.get("back", {}).get("image", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
front_response = cropped_images.get("front", {}).get("api_response", "{}")
|
| 88 |
+
back_response = cropped_images.get("back", {}).get("api_response", "{}")
|
| 89 |
|
| 90 |
+
return front_image, front_response, back_image, back_response, labels
|
| 91 |
|
| 92 |
+
# Gradio Interface
|
| 93 |
iface = gr.Interface(
|
| 94 |
fn=predict,
|
| 95 |
inputs="image",
|
| 96 |
+
outputs=["image", "text", "image", "text", "text"],
|
| 97 |
+
title="License Field Detection (Front & Back Card)",
|
| 98 |
+
description="Detect front & back of a license card, crop the images, and call Vision AI API separately for each."
|
| 99 |
)
|
| 100 |
|
| 101 |
iface.launch()
|