""" Example experiment configuration for Agent Tuning Optimization Framework This configuration file defines parameters for running an experiment with the framework. """ { "name": "agent_tuning_experiment", "description": "Experiment to evaluate the effectiveness of negative and synthetic samples in agent tuning", "llm": { "model_name": "gpt2", "model_type": "causal", "device": "cpu", "max_length": 512, "temperature": 0.7 }, "dataset": { "name": "agent_tuning_dataset", "num_trajectories": 20 }, "negative_samples": { "enabled": true, "method": "response_degradation", "params": { "degradation_level": 0.6 } }, "synthetic_trajectories": { "enabled": true, "method": "template", "params": { "num_interactions": 3 } }, "tuning": { "method": "supervised", "params": { "num_train_epochs": 3, "learning_rate": 5e-5, "batch_size": 4, "gradient_accumulation_steps": 4, "positive_weight": 0.8 } }, "evaluation": { "method": "quality", "params": { "num_samples": 10 }, "comparative": { "enabled": true, "params": { "num_samples": 5 } } } }