import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch MODEL = "roberta-base-openai-detector" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForSequenceClassification.from_pretrained(MODEL) def detect_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True) outputs = model(**inputs) probs = torch.softmax(outputs.logits, dim=1) return {"Human": probs[0][0].item(), "AI": probs[0][1].item()} demo = gr.Interface( fn=detect_text, inputs=gr.Textbox(lines=5, placeholder="Paste text here..."), outputs="label", title="AI Text Detector Chatbot 🤖", description="Detect whether text is human-written or AI-generated." ) demo = gr.Interface( fn=detect_text, inputs=gr.Textbox(lines=5, placeholder="Paste text here..."), outputs=gr.Label(), # shows classification with confidence title="AI Text Detector Chatbot 🤖", description="Detect whether text is human-written or AI-generated." ) demo.launch(share=True)