|
|
from hmac import new |
|
|
import sys |
|
|
import os |
|
|
import argparse |
|
|
|
|
|
import time |
|
|
import json |
|
|
import torch |
|
|
import torchaudio |
|
|
import numpy as np |
|
|
from omegaconf import OmegaConf |
|
|
from codeclm.models import builders |
|
|
import gc |
|
|
from codeclm.trainer.codec_song_pl import CodecLM_PL |
|
|
from codeclm.models import CodecLM |
|
|
from third_party.demucs.models.pretrained import get_model_from_yaml |
|
|
import re |
|
|
|
|
|
auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto'] |
|
|
|
|
|
def check_language_by_text(text): |
|
|
chinese_pattern = re.compile(r'[\u4e00-\u9fff]') |
|
|
english_pattern = re.compile(r'[a-zA-Z]') |
|
|
chinese_count = len(re.findall(chinese_pattern, text)) |
|
|
english_count = len(re.findall(english_pattern, text)) |
|
|
chinese_ratio = chinese_count / len(text) |
|
|
english_ratio = english_count / len(text) |
|
|
if chinese_ratio >= 0.2: |
|
|
return "zh" |
|
|
elif english_ratio >= 0.5: |
|
|
return "en" |
|
|
else: |
|
|
return "en" |
|
|
|
|
|
class Separator: |
|
|
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None: |
|
|
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count(): |
|
|
self.device = torch.device(f"cuda:{gpu_id}") |
|
|
else: |
|
|
self.device = torch.device("cpu") |
|
|
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path) |
|
|
|
|
|
def init_demucs_model(self, model_path, config_path): |
|
|
model = get_model_from_yaml(config_path, model_path) |
|
|
model.to(self.device) |
|
|
model.eval() |
|
|
return model |
|
|
|
|
|
def load_audio(self, f): |
|
|
a, fs = torchaudio.load(f) |
|
|
if (fs != 48000): |
|
|
a = torchaudio.functional.resample(a, fs, 48000) |
|
|
if a.shape[-1] >= 48000*10: |
|
|
a = a[..., :48000*10] |
|
|
return a[:, 0:48000*10] |
|
|
|
|
|
def run(self, audio_path, output_dir='tmp', ext=".flac"): |
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
name, _ = os.path.splitext(os.path.split(audio_path)[-1]) |
|
|
output_paths = [] |
|
|
|
|
|
for stem in self.demucs_model.sources: |
|
|
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}") |
|
|
if os.path.exists(output_path): |
|
|
output_paths.append(output_path) |
|
|
if len(output_paths) == 1: |
|
|
vocal_path = output_paths[0] |
|
|
else: |
|
|
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device) |
|
|
for path in [drums_path, bass_path, other_path]: |
|
|
os.remove(path) |
|
|
full_audio = self.load_audio(audio_path) |
|
|
vocal_audio = self.load_audio(vocal_path) |
|
|
bgm_audio = full_audio - vocal_audio |
|
|
return full_audio, vocal_audio, bgm_audio |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser(description='Song Generation Script') |
|
|
|
|
|
|
|
|
parser.add_argument('--ckpt_path', type=str, required=True, |
|
|
help='Path to the checkpoint directory containing config.yaml and model.pt') |
|
|
parser.add_argument('--input_jsonl', type=str, required=True, |
|
|
help='Path to input JSONL file containing generation tasks') |
|
|
parser.add_argument('--save_dir', type=str, required=True, |
|
|
help='Directory to save generated audio files and results') |
|
|
|
|
|
parser.add_argument('--generate_type', type=str, default='mixed', |
|
|
help='Type of generation: "vocal" or "bgm" or "separate" or "mixed" (default: "mixed")') |
|
|
parser.add_argument('--use_flash_attn', action='store_true', |
|
|
help='Whether to use flash attention (default: False)') |
|
|
parser.add_argument('--low_mem', action='store_true', |
|
|
help='Whether to use low memory mode (default: False)') |
|
|
return parser.parse_args() |
|
|
|
|
|
def generate(args, version = 'v1.0'): |
|
|
torch.set_num_threads(1) |
|
|
ckpt_path = args.ckpt_path |
|
|
input_jsonl = args.input_jsonl |
|
|
save_dir = args.save_dir |
|
|
cfg_path = os.path.join(ckpt_path, 'config.yaml') |
|
|
ckpt_path = os.path.join(ckpt_path, 'model.pt') |
|
|
cfg = OmegaConf.load(cfg_path) |
|
|
cfg.lm.use_flash_attn_2 = args.use_flash_attn |
|
|
print(f"use_flash_attn: {args.use_flash_attn}") |
|
|
cfg.mode = 'inference' |
|
|
max_duration = cfg.max_dur |
|
|
gen_type = args.generate_type |
|
|
|
|
|
|
|
|
separator = Separator() |
|
|
auto_prompt = torch.load('tools/new_auto_prompt.pt') |
|
|
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg) |
|
|
audio_tokenizer = audio_tokenizer.eval().cuda() |
|
|
with open(input_jsonl, "r") as fp: |
|
|
lines = fp.readlines() |
|
|
|
|
|
|
|
|
new_items = [] |
|
|
for line in lines: |
|
|
item = json.loads(line) |
|
|
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac" |
|
|
|
|
|
if "prompt_audio_path" in item: |
|
|
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found" |
|
|
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together" |
|
|
with torch.no_grad(): |
|
|
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path']) |
|
|
item['raw_pmt_wav'] = pmt_wav |
|
|
item['raw_vocal_wav'] = vocal_wav |
|
|
item['raw_bgm_wav'] = bgm_wav |
|
|
if pmt_wav.dim() == 2: |
|
|
pmt_wav = pmt_wav[None] |
|
|
if pmt_wav.dim() != 3: |
|
|
raise ValueError("Melody wavs should have a shape [B, C, T].") |
|
|
pmt_wav = list(pmt_wav) |
|
|
if vocal_wav.dim() == 2: |
|
|
vocal_wav = vocal_wav[None] |
|
|
if vocal_wav.dim() != 3: |
|
|
raise ValueError("Vocal wavs should have a shape [B, C, T].") |
|
|
vocal_wav = list(vocal_wav) |
|
|
if bgm_wav.dim() == 2: |
|
|
bgm_wav = bgm_wav[None] |
|
|
if bgm_wav.dim() != 3: |
|
|
raise ValueError("BGM wavs should have a shape [B, C, T].") |
|
|
bgm_wav = list(bgm_wav) |
|
|
if type(pmt_wav) == list: |
|
|
pmt_wav = torch.stack(pmt_wav, dim=0) |
|
|
if type(vocal_wav) == list: |
|
|
vocal_wav = torch.stack(vocal_wav, dim=0) |
|
|
if type(bgm_wav) == list: |
|
|
bgm_wav = torch.stack(bgm_wav, dim=0) |
|
|
pmt_wav = pmt_wav |
|
|
vocal_wav = vocal_wav |
|
|
bgm_wav = bgm_wav |
|
|
with torch.no_grad(): |
|
|
pmt_wav, _ = audio_tokenizer.encode(pmt_wav.cuda()) |
|
|
melody_is_wav = False |
|
|
elif "auto_prompt_audio_type" in item: |
|
|
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found" |
|
|
if item['auto_prompt_audio_type'] == 'Auto': |
|
|
lang = check_language_by_text(item['gt_lyric']) |
|
|
prompt_token = auto_prompt['Auto'][lang][np.random.randint(0, len(auto_prompt['Auto'][lang]))] |
|
|
else: |
|
|
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))] |
|
|
pmt_wav = prompt_token[:,[0],:] |
|
|
vocal_wav = prompt_token[:,[1],:] |
|
|
bgm_wav = prompt_token[:,[2],:] |
|
|
melody_is_wav = False |
|
|
else: |
|
|
pmt_wav = None |
|
|
vocal_wav = None |
|
|
bgm_wav = None |
|
|
melody_is_wav = True |
|
|
item['pmt_wav'] = pmt_wav |
|
|
item['vocal_wav'] = vocal_wav |
|
|
item['bgm_wav'] = bgm_wav |
|
|
item['melody_is_wav'] = melody_is_wav |
|
|
item["idx"] = f"{item['idx']}" |
|
|
item["wav_path"] = target_wav_name |
|
|
new_items.append(item) |
|
|
|
|
|
del audio_tokenizer |
|
|
del separator |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
if "audio_tokenizer_checkpoint_sep" in cfg.keys(): |
|
|
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg) |
|
|
else: |
|
|
seperate_tokenizer = None |
|
|
|
|
|
if seperate_tokenizer is not None: |
|
|
seperate_tokenizer = seperate_tokenizer.eval().cuda() |
|
|
|
|
|
for item in new_items: |
|
|
if "prompt_audio_path" in item: |
|
|
with torch.no_grad(): |
|
|
vocal_wav, bgm_wav = seperate_tokenizer.encode(item['vocal_wav'].cuda(), item['bgm_wav'].cuda()) |
|
|
item['vocal_wav'] = vocal_wav |
|
|
item['bgm_wav'] = bgm_wav |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
audiolm = builders.get_lm_model(cfg, version=version) |
|
|
checkpoint = torch.load(ckpt_path, map_location='cpu') |
|
|
audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')} |
|
|
audiolm.load_state_dict(audiolm_state_dict, strict=False) |
|
|
audiolm = audiolm.eval() |
|
|
audiolm = audiolm.cuda().to(torch.float16) |
|
|
|
|
|
model = CodecLM(name = "tmp", |
|
|
lm = audiolm, |
|
|
audiotokenizer = None, |
|
|
max_duration = max_duration, |
|
|
seperate_tokenizer = seperate_tokenizer, |
|
|
) |
|
|
|
|
|
cfg_coef = 1.5 |
|
|
temp = 0.9 |
|
|
top_k = 50 |
|
|
top_p = 0.0 |
|
|
record_tokens = True |
|
|
record_window = 50 |
|
|
|
|
|
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef, |
|
|
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window) |
|
|
os.makedirs(save_dir, exist_ok=True) |
|
|
os.makedirs(save_dir + "/audios", exist_ok=True) |
|
|
os.makedirs(save_dir + "/jsonl", exist_ok=True) |
|
|
|
|
|
for item in new_items: |
|
|
lyric = item["gt_lyric"] |
|
|
if version == 'v1.0': |
|
|
descriptions = item["descriptions"] if "descriptions" in item else None |
|
|
else: |
|
|
descriptions = item["descriptions"] if "descriptions" in item else '.' |
|
|
descriptions = '[Musicality-very-high]' + ', ' + descriptions |
|
|
pmt_wav = item['pmt_wav'] |
|
|
vocal_wav = item['vocal_wav'] |
|
|
bgm_wav = item['bgm_wav'] |
|
|
melody_is_wav = item['melody_is_wav'] |
|
|
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac" |
|
|
|
|
|
|
|
|
generate_inp = { |
|
|
'lyrics': [lyric.replace(" ", " ")], |
|
|
'descriptions': [descriptions], |
|
|
'melody_wavs': pmt_wav, |
|
|
'vocal_wavs': vocal_wav, |
|
|
'bgm_wavs': bgm_wav, |
|
|
'melody_is_wav': melody_is_wav, |
|
|
} |
|
|
start_time = time.time() |
|
|
with torch.autocast(device_type="cuda", dtype=torch.float16): |
|
|
with torch.no_grad(): |
|
|
tokens = model.generate(**generate_inp, return_tokens=True) |
|
|
mid_time = time.time() |
|
|
|
|
|
with torch.no_grad(): |
|
|
if 'raw_pmt_wav' in item: |
|
|
if gen_type == 'separate': |
|
|
wav_seperate = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='mixed') |
|
|
wav_vocal = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='vocal') |
|
|
wav_bgm = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type='bgm') |
|
|
elif gen_type == 'mixed': |
|
|
wav_seperate = model.generate_audio(tokens, item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type=gen_type) |
|
|
else: |
|
|
wav_seperate = model.generate_audio(tokens,chunked=True, gen_type=gen_type) |
|
|
del item['raw_pmt_wav'] |
|
|
del item['raw_vocal_wav'] |
|
|
del item['raw_bgm_wav'] |
|
|
else: |
|
|
if gen_type == 'separate': |
|
|
wav_vocal = model.generate_audio(tokens, chunked=True, gen_type='vocal') |
|
|
wav_bgm = model.generate_audio(tokens, chunked=True, gen_type='bgm') |
|
|
wav_seperate = model.generate_audio(tokens, chunked=True, gen_type='mixed') |
|
|
else: |
|
|
wav_seperate = model.generate_audio(tokens, chunked=True, gen_type=gen_type) |
|
|
del item['pmt_wav'] |
|
|
del item['vocal_wav'] |
|
|
del item['bgm_wav'] |
|
|
del item['melody_is_wav'] |
|
|
end_time = time.time() |
|
|
if gen_type == 'separate': |
|
|
torchaudio.save(target_wav_name.replace('.flac', '_vocal.flac'), wav_vocal[0].cpu().float(), cfg.sample_rate) |
|
|
torchaudio.save(target_wav_name.replace('.flac', '_bgm.flac'), wav_bgm[0].cpu().float(), cfg.sample_rate) |
|
|
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate) |
|
|
else: |
|
|
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate) |
|
|
|
|
|
print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}") |
|
|
item["idx"] = f"{item['idx']}" |
|
|
item["wav_path"] = target_wav_name |
|
|
|
|
|
src_jsonl_name = os.path.split(input_jsonl)[-1] |
|
|
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw: |
|
|
for item in new_items: |
|
|
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n") |
|
|
|
|
|
def generate_lowmem(args): |
|
|
torch.set_num_threads(1) |
|
|
ckpt_path = args.ckpt_path |
|
|
input_jsonl = args.input_jsonl |
|
|
save_dir = args.save_dir |
|
|
cfg_path = os.path.join(ckpt_path, 'config.yaml') |
|
|
ckpt_path = os.path.join(ckpt_path, 'model.pt') |
|
|
cfg = OmegaConf.load(cfg_path) |
|
|
cfg.lm.use_flash_attn_2 = args.use_flash_attn |
|
|
print(f"use_flash_attn: {args.use_flash_attn}") |
|
|
cfg.mode = 'inference' |
|
|
max_duration = cfg.max_dur |
|
|
gen_type = args.generate_type |
|
|
chunk_size = 128 |
|
|
use_audio_tokenizer = False |
|
|
with open(input_jsonl, "r") as fp: |
|
|
lines = fp.readlines() |
|
|
for line in lines: |
|
|
item = json.loads(line) |
|
|
if "prompt_audio_path" in item: |
|
|
use_audio_tokenizer = True |
|
|
break |
|
|
if use_audio_tokenizer: |
|
|
separator = Separator() |
|
|
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg) |
|
|
audio_tokenizer = audio_tokenizer.eval().cuda() |
|
|
auto_prompt = torch.load('tools/new_prompt.pt') |
|
|
new_items = [] |
|
|
for line in lines: |
|
|
item = json.loads(line) |
|
|
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac" |
|
|
|
|
|
if "prompt_audio_path" in item: |
|
|
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found" |
|
|
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together" |
|
|
with torch.no_grad(): |
|
|
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path']) |
|
|
item['raw_pmt_wav'] = pmt_wav |
|
|
item['raw_vocal_wav'] = vocal_wav |
|
|
item['raw_bgm_wav'] = bgm_wav |
|
|
if pmt_wav.dim() == 2: |
|
|
pmt_wav = pmt_wav[None] |
|
|
if pmt_wav.dim() != 3: |
|
|
raise ValueError("Melody wavs should have a shape [B, C, T].") |
|
|
pmt_wav = list(pmt_wav) |
|
|
if vocal_wav.dim() == 2: |
|
|
vocal_wav = vocal_wav[None] |
|
|
if vocal_wav.dim() != 3: |
|
|
raise ValueError("Vocal wavs should have a shape [B, C, T].") |
|
|
vocal_wav = list(vocal_wav) |
|
|
if bgm_wav.dim() == 2: |
|
|
bgm_wav = bgm_wav[None] |
|
|
if bgm_wav.dim() != 3: |
|
|
raise ValueError("BGM wavs should have a shape [B, C, T].") |
|
|
bgm_wav = list(bgm_wav) |
|
|
if type(pmt_wav) == list: |
|
|
pmt_wav = torch.stack(pmt_wav, dim=0) |
|
|
if type(vocal_wav) == list: |
|
|
vocal_wav = torch.stack(vocal_wav, dim=0) |
|
|
if type(bgm_wav) == list: |
|
|
bgm_wav = torch.stack(bgm_wav, dim=0) |
|
|
with torch.no_grad(): |
|
|
pmt_wav, _ = audio_tokenizer.encode(pmt_wav.cuda()) |
|
|
melody_is_wav = False |
|
|
elif "auto_prompt_audio_type" in item: |
|
|
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found" |
|
|
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))] |
|
|
pmt_wav = prompt_token[:,[0],:] |
|
|
vocal_wav = prompt_token[:,[1],:] |
|
|
bgm_wav = prompt_token[:,[2],:] |
|
|
melody_is_wav = False |
|
|
else: |
|
|
pmt_wav = None |
|
|
vocal_wav = None |
|
|
bgm_wav = None |
|
|
melody_is_wav = True |
|
|
item['pmt_wav'] = pmt_wav |
|
|
item['vocal_wav'] = vocal_wav |
|
|
item['bgm_wav'] = bgm_wav |
|
|
item['melody_is_wav'] = melody_is_wav |
|
|
item["idx"] = f"{item['idx']}" |
|
|
item["wav_path"] = target_wav_name |
|
|
new_items.append(item) |
|
|
|
|
|
if use_audio_tokenizer: |
|
|
del audio_tokenizer |
|
|
del separator |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
if "audio_tokenizer_checkpoint_sep" in cfg.keys() and use_audio_tokenizer: |
|
|
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg) |
|
|
else: |
|
|
seperate_tokenizer = None |
|
|
|
|
|
if seperate_tokenizer is not None: |
|
|
seperate_tokenizer = seperate_tokenizer.eval().cuda() |
|
|
|
|
|
for item in new_items: |
|
|
if "prompt_audio_path" in item: |
|
|
with torch.no_grad(): |
|
|
vocal_wav, bgm_wav = seperate_tokenizer.encode(item['vocal_wav'].cuda(), item['bgm_wav'].cuda()) |
|
|
item['vocal_wav'] = vocal_wav |
|
|
item['bgm_wav'] = bgm_wav |
|
|
|
|
|
if use_audio_tokenizer: |
|
|
del seperate_tokenizer |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
audiolm = builders.get_lm_model(cfg) |
|
|
checkpoint = torch.load(ckpt_path, map_location='cpu') |
|
|
audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')} |
|
|
audiolm.load_state_dict(audiolm_state_dict, strict=False) |
|
|
audiolm = audiolm.eval() |
|
|
|
|
|
offload_audiolm = True if 'offload' in cfg.keys() and 'audiolm' in cfg.offload else False |
|
|
if offload_audiolm: |
|
|
audiolm_offload_param = OffloadParamParse.parse_config(audiolm, cfg.offload.audiolm) |
|
|
audiolm_offload_param.show() |
|
|
offload_profiler = OffloadProfiler(device_index=0, **(audiolm_offload_param.init_param_dict())) |
|
|
offload_profiler.offload_layer(**(audiolm_offload_param.offload_layer_param_dict())) |
|
|
offload_profiler.clean_cache_wrapper(**(audiolm_offload_param.clean_cache_param_dict())) |
|
|
else: |
|
|
audiolm = audiolm.cuda().to(torch.float16) |
|
|
|
|
|
model = CodecLM(name = "tmp", |
|
|
lm = audiolm, |
|
|
audiotokenizer = None, |
|
|
max_duration = max_duration, |
|
|
seperate_tokenizer = None, |
|
|
) |
|
|
|
|
|
cfg_coef = 1.5 |
|
|
temp = 0.9 |
|
|
top_k = 50 |
|
|
top_p = 0.0 |
|
|
record_tokens = True |
|
|
record_window = 50 |
|
|
|
|
|
|
|
|
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef, |
|
|
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window) |
|
|
os.makedirs(save_dir, exist_ok=True) |
|
|
os.makedirs(save_dir + "/audios", exist_ok=True) |
|
|
os.makedirs(save_dir + "/jsonl", exist_ok=True) |
|
|
|
|
|
|
|
|
for item in new_items: |
|
|
lyric = item["gt_lyric"] |
|
|
descriptions = item["descriptions"] if "descriptions" in item else None |
|
|
pmt_wav = item['pmt_wav'] |
|
|
vocal_wav = item['vocal_wav'] |
|
|
bgm_wav = item['bgm_wav'] |
|
|
melody_is_wav = item['melody_is_wav'] |
|
|
|
|
|
generate_inp = { |
|
|
'lyrics': [lyric.replace(" ", " ")], |
|
|
'descriptions': [descriptions], |
|
|
'melody_wavs': pmt_wav, |
|
|
'vocal_wavs': vocal_wav, |
|
|
'bgm_wavs': bgm_wav, |
|
|
'melody_is_wav': melody_is_wav, |
|
|
} |
|
|
with torch.autocast(device_type="cuda", dtype=torch.float16): |
|
|
with torch.no_grad(): |
|
|
tokens = model.generate(**generate_inp, return_tokens=True) |
|
|
if offload_audiolm: |
|
|
offload_profiler.reset_empty_cache_mem_line() |
|
|
item['tokens'] = tokens |
|
|
if offload_audiolm: |
|
|
offload_profiler.stop() |
|
|
del offload_profiler |
|
|
del audiolm_offload_param |
|
|
del model |
|
|
audiolm = audiolm.cpu() |
|
|
del audiolm |
|
|
del checkpoint |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
seperate_tokenizer = builders.get_audio_tokenizer_model_cpu(cfg.audio_tokenizer_checkpoint_sep, cfg) |
|
|
device = "cuda:0" |
|
|
seperate_tokenizer.model.device = device |
|
|
seperate_tokenizer.model.vae = seperate_tokenizer.model.vae.to(device) |
|
|
seperate_tokenizer.model.model.device = torch.device(device) |
|
|
seperate_tokenizer = seperate_tokenizer.eval() |
|
|
|
|
|
|
|
|
offload_wav_tokenizer_diffusion = False |
|
|
if offload_wav_tokenizer_diffusion: |
|
|
sep_offload_param = OffloadParamParse.parse_config(seperate_tokenizer, cfg.offload.wav_tokenizer_diffusion) |
|
|
sep_offload_param.show() |
|
|
sep_offload_profiler = OffloadProfiler(device_index=0, **(sep_offload_param.init_param_dict())) |
|
|
sep_offload_profiler.offload_layer(**(sep_offload_param.offload_layer_param_dict())) |
|
|
sep_offload_profiler.clean_cache_wrapper(**(sep_offload_param.clean_cache_param_dict())) |
|
|
else: |
|
|
seperate_tokenizer.model.model = seperate_tokenizer.model.model.to(device) |
|
|
|
|
|
model = CodecLM(name = "tmp", |
|
|
lm = None, |
|
|
audiotokenizer = None, |
|
|
max_duration = max_duration, |
|
|
seperate_tokenizer = seperate_tokenizer, |
|
|
) |
|
|
|
|
|
for item in new_items: |
|
|
with torch.no_grad(): |
|
|
if 'raw_pmt_wav' in item: |
|
|
if gen_type == 'separate': |
|
|
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type='mixed') |
|
|
wav_vocal = model.generate_audio(item['tokens'],chunked=True, gen_type='vocal') |
|
|
wav_bgm = model.generate_audio(item['tokens'], chunked=True, gen_type='bgm') |
|
|
elif gen_type == 'mixed': |
|
|
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'],chunked=True, gen_type=gen_type) |
|
|
else: |
|
|
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type) |
|
|
del item['raw_pmt_wav'] |
|
|
del item['raw_vocal_wav'] |
|
|
del item['raw_bgm_wav'] |
|
|
else: |
|
|
if gen_type == 'separate': |
|
|
wav_vocal = model.generate_audio(item['tokens'], chunked=True, gen_type='vocal') |
|
|
wav_bgm = model.generate_audio(item['tokens'], chunked=True, gen_type='bgm') |
|
|
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type='mixed') |
|
|
else: |
|
|
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type) |
|
|
if gen_type == 'separate': |
|
|
torchaudio.save(item['wav_path'].replace('.flac', '_vocal.flac'), wav_vocal[0].cpu().float(), cfg.sample_rate) |
|
|
torchaudio.save(item['wav_path'].replace('.flac', '_bgm.flac'), wav_bgm[0].cpu().float(), cfg.sample_rate) |
|
|
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate) |
|
|
else: |
|
|
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate) |
|
|
del item['tokens'] |
|
|
del item['pmt_wav'] |
|
|
del item['vocal_wav'] |
|
|
del item['bgm_wav'] |
|
|
del item['melody_is_wav'] |
|
|
if offload_wav_tokenizer_diffusion: |
|
|
sep_offload_profiler.reset_empty_cache_mem_line() |
|
|
|
|
|
if offload_wav_tokenizer_diffusion: |
|
|
sep_offload_profiler.stop() |
|
|
torch.cuda.empty_cache() |
|
|
src_jsonl_name = os.path.split(input_jsonl)[-1] |
|
|
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw: |
|
|
for item in new_items: |
|
|
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
torch.backends.cudnn.enabled = False |
|
|
OmegaConf.register_new_resolver("eval", lambda x: eval(x)) |
|
|
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx]) |
|
|
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0]) |
|
|
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x))) |
|
|
np.random.seed(int(time.time())) |
|
|
|
|
|
args = parse_args() |
|
|
if torch.cuda.is_available(): |
|
|
device = torch.cuda.current_device() |
|
|
reserved = torch.cuda.memory_reserved(device) |
|
|
total = torch.cuda.get_device_properties(device).total_memory |
|
|
res_mem = (total - reserved) / 1024 / 1024 / 1024 |
|
|
print(f"reserved memory: {res_mem}GB") |
|
|
|
|
|
model_name = args.ckpt_path.split("/")[-1].lower().replace('-', '_') |
|
|
assert model_name in ['songgeneration_base', 'songgeneration_base_new', 'songgeneration_base_full', 'songgeneration_large', 'songgeneration_new_small', 'songgeneration_new_large', 'songgeneration_new_medium'], f'{model_name} is not supported, currently only songgeneration_base, songgeneration_base_new, songgeneration_base_full, songgeneration_large are supported. Please download correct files and rename the folder to the corresponding version name.' |
|
|
if model_name == 'songgeneration_base' or model_name == 'songgeneration_base_new' or model_name == 'songgeneration_base_full': |
|
|
if res_mem > 24 and not args.low_mem: |
|
|
print("use generate") |
|
|
generate(args) |
|
|
else: |
|
|
from codeclm.utils.offload_profiler import OffloadProfiler, OffloadParamParse |
|
|
print("use generate_lowmem") |
|
|
generate_lowmem(args) |
|
|
elif model_name == 'songgeneration_large': |
|
|
if res_mem > 36 and not args.low_mem: |
|
|
print("use generate") |
|
|
generate(args) |
|
|
else: |
|
|
print("use generate_lowmem") |
|
|
from codeclm.utils.offload_profiler import OffloadProfiler, OffloadParamParse |
|
|
generate_lowmem(args) |
|
|
elif model_name == 'songgeneration_new_small' or model_name == 'songgeneration_new_large' or model_name == 'songgeneration_new_medium': |
|
|
print("use generate") |
|
|
generate(args, version = 'v1.5') |
|
|
|
|
|
|
|
|
else: |
|
|
print("CUDA is not available") |
|
|
exit() |
|
|
|
|
|
|