|
|
from concurrent.futures import ProcessPoolExecutor |
|
|
from contextlib import contextmanager |
|
|
from functools import wraps, lru_cache |
|
|
import hashlib |
|
|
import json |
|
|
import logging |
|
|
from pathlib import Path |
|
|
import typing as tp |
|
|
import math |
|
|
from torch import nn |
|
|
import typing as tp |
|
|
from functools import partial |
|
|
import torch.nn.functional as F |
|
|
import flashy |
|
|
import flashy.distrib |
|
|
import omegaconf |
|
|
import torch |
|
|
from torch.nn.utils.rnn import pad_sequence |
|
|
|
|
|
def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor: |
|
|
"""Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences). |
|
|
For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]] |
|
|
|
|
|
Args: |
|
|
lengths (torch.Tensor): tensor with lengths |
|
|
max_len (int): can set the max length manually. Defaults to None. |
|
|
Returns: |
|
|
torch.Tensor: mask with 0s where there is pad tokens else 1s |
|
|
""" |
|
|
assert len(lengths.shape) == 1, "Length shape should be 1 dimensional." |
|
|
final_length = lengths.max().item() if not max_len else max_len |
|
|
final_length = max(final_length, 1) |
|
|
return torch.arange(final_length)[None, :].to(lengths.device) < lengths[:, None] |
|
|
|
|
|
|
|
|
|
|
|
def dict_from_config(cfg: omegaconf.DictConfig) -> dict: |
|
|
"""Convenience function to map an omegaconf configuration to a dictionary. |
|
|
|
|
|
Args: |
|
|
cfg (omegaconf.DictConfig): Original configuration to map to dict. |
|
|
Returns: |
|
|
dict: Config as dictionary object. |
|
|
""" |
|
|
dct = omegaconf.OmegaConf.to_container(cfg, resolve=True) |
|
|
assert isinstance(dct, dict) |
|
|
return dct |
|
|
|
|
|
def create_norm_fn(norm_type: str, dim: int, **kwargs) -> nn.Module: |
|
|
"""Create normalization module for transformer encoder layer. |
|
|
|
|
|
Args: |
|
|
norm_type (str): Normalization method. |
|
|
dim (int): Dimension of the normalized layer. |
|
|
**kwargs (dict): Additional parameters for normalization layer. |
|
|
Returns: |
|
|
nn.Module: Normalization module. |
|
|
""" |
|
|
if norm_type == 'layer_norm': |
|
|
return nn.LayerNorm(dim, eps=1e-5, **kwargs) |
|
|
else: |
|
|
raise ValueError(f"Unknown norm type: {norm_type}") |
|
|
|
|
|
def get_init_fn(method: str, input_dim: int, init_depth: tp.Optional[int] = None): |
|
|
"""LM layer initialization. |
|
|
Inspired from xlformers: https://github.com/fairinternal/xlformers |
|
|
|
|
|
Args: |
|
|
method (str): Method name for init function. Valid options are: |
|
|
'gaussian', 'uniform'. |
|
|
input_dim (int): Input dimension of the initialized module. |
|
|
init_depth (int, optional): Optional init depth value used to rescale |
|
|
the standard deviation if defined. |
|
|
""" |
|
|
|
|
|
std = 1 / math.sqrt(input_dim) |
|
|
|
|
|
if init_depth is not None: |
|
|
std = std / math.sqrt(2 * init_depth) |
|
|
|
|
|
if method == 'gaussian': |
|
|
return partial( |
|
|
torch.nn.init.trunc_normal_, mean=0.0, std=std, a=-3 * std, b=3 * std |
|
|
) |
|
|
elif method == 'uniform': |
|
|
bound = math.sqrt(3) * std |
|
|
return partial(torch.nn.init.uniform_, a=-bound, b=bound) |
|
|
else: |
|
|
raise ValueError("Unsupported layer initialization method") |
|
|
|
|
|
def init_layer(m: nn.Module, |
|
|
method: str, |
|
|
init_depth: tp.Optional[int] = None, |
|
|
zero_bias_init: bool = False): |
|
|
"""Wrapper around ``get_init_fn`` for proper initialization of LM modules. |
|
|
|
|
|
Args: |
|
|
m (nn.Module): Module to initialize. |
|
|
method (str): Method name for the init function. |
|
|
init_depth (int, optional): Optional init depth value used to rescale |
|
|
the standard deviation if defined. |
|
|
zero_bias_init (bool): Whether to initialize the bias to 0 or not. |
|
|
""" |
|
|
if isinstance(m, nn.Linear): |
|
|
init_fn = get_init_fn(method, m.in_features, init_depth=init_depth) |
|
|
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16: |
|
|
weight = m.weight.float() |
|
|
init_fn(weight) |
|
|
m.weight.data[:] = weight.half() |
|
|
else: |
|
|
init_fn(m.weight) |
|
|
if zero_bias_init and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.Embedding): |
|
|
init_fn = get_init_fn(method, m.embedding_dim, init_depth=None) |
|
|
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16: |
|
|
weight = m.weight.float() |
|
|
init_fn(weight) |
|
|
m.weight.data[:] = weight.half() |
|
|
else: |
|
|
init_fn(m.weight) |
|
|
|
|
|
def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Get a list of tensors and collate them to a single tensor. according to the following logic: |
|
|
- `dim` specifies the time dimension which will be stacked and padded. |
|
|
- The output will contain 1 new dimension (dimension index 0) which will be the size of |
|
|
of the original list. |
|
|
|
|
|
Args: |
|
|
tensors (tp.List[torch.Tensor]): List of tensors to collate. |
|
|
dim (int): Dimension which will be stacked and padded. |
|
|
Returns: |
|
|
tp.Tuple[torch.Tensor, torch.Tensor]: |
|
|
torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension |
|
|
(dimension index 0) which will be the size of the original list. |
|
|
torch.Tensor: Tensor containing length of original tensor sizes (without padding). |
|
|
""" |
|
|
tensors = [x.transpose(0, dim) for x in tensors] |
|
|
lens = torch.LongTensor([len(x) for x in tensors]) |
|
|
padded_tensors = pad_sequence(tensors) |
|
|
padded_tensors = padded_tensors.transpose(0, 1) |
|
|
padded_tensors = padded_tensors.transpose(1, dim + 1) |
|
|
return padded_tensors, lens |
|
|
|
|
|
def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor: |
|
|
"""Sample next token from top K values along the last dimension of the input probs tensor. |
|
|
|
|
|
Args: |
|
|
probs (torch.Tensor): Input probabilities with token candidates on the last dimension. |
|
|
k (int): The k in “top-k”. |
|
|
Returns: |
|
|
torch.Tensor: Sampled tokens. |
|
|
""" |
|
|
top_k_value, _ = torch.topk(probs, k, dim=-1) |
|
|
min_value_top_k = top_k_value[..., [-1]] |
|
|
probs *= (probs >= min_value_top_k).float() |
|
|
probs.div_(probs.sum(dim=-1, keepdim=True)) |
|
|
next_token = multinomial(probs, num_samples=1) |
|
|
return next_token |
|
|
|
|
|
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: |
|
|
"""Sample next token from top P probabilities along the last dimension of the input probs tensor. |
|
|
|
|
|
Args: |
|
|
probs (torch.Tensor): Input probabilities with token candidates on the last dimension. |
|
|
p (int): The p in “top-p”. |
|
|
Returns: |
|
|
torch.Tensor: Sampled tokens. |
|
|
""" |
|
|
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) |
|
|
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
|
mask = probs_sum - probs_sort > p |
|
|
probs_sort *= (~mask).float() |
|
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
|
next_token = multinomial(probs_sort, num_samples=1) |
|
|
next_token = torch.gather(probs_idx, -1, next_token) |
|
|
return next_token |
|
|
|
|
|
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): |
|
|
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. |
|
|
|
|
|
Args: |
|
|
input (torch.Tensor): The input tensor containing probabilities. |
|
|
num_samples (int): Number of samples to draw. |
|
|
replacement (bool): Whether to draw with replacement or not. |
|
|
Keywords args: |
|
|
generator (torch.Generator): A pseudorandom number generator for sampling. |
|
|
Returns: |
|
|
torch.Tensor: Last dimension contains num_samples indices |
|
|
sampled from the multinomial probability distribution |
|
|
located in the last dimension of tensor input. |
|
|
""" |
|
|
input_ = input.reshape(-1, input.shape[-1]) |
|
|
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) |
|
|
output = output_.reshape(*list(input.shape[:-1]), -1) |
|
|
return output |