|
|
|
|
|
from .llama.modeling_llama import LlamaConfig, CausalLMOutputWithPast, BaseModelOutputWithPast, LlamaDecoderLayer, LlamaRMSNorm |
|
|
from .llama.modeling_llama import LlamaForCausalLM as LlamaForCausalLM_base |
|
|
from .llama.modeling_llama import LlamaModel as LlamaModel_base |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from typing import Union, Optional, Tuple, List |
|
|
from packaging import version |
|
|
import transformers |
|
|
""" |
|
|
Wrap the original Llama model for potential customized changes. |
|
|
""" |
|
|
|
|
|
"""main class""" |
|
|
class CausalLM(LlamaForCausalLM_base): |
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = LmModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
if self.config.pretraining_tp > 1: |
|
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) |
|
|
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] |
|
|
logits = torch.cat(logits, dim=-1) |
|
|
else: |
|
|
logits = self.lm_head(hidden_states) |
|
|
logits = logits.float() |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
"""Submodel class""" |
|
|
class LmModel(LlamaModel_base): |
|
|
def __init__(self, config: LlamaConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
layer_cls = LlamaDecoderLayer |
|
|
|
|
|
assert version.parse(transformers.__version__) < version.parse("4.40") |
|
|
|
|
|
self.layers = nn.ModuleList([layer_cls(config) for _ in range(config.num_hidden_layers)]) |
|
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
self.gradient_checkpointing_disable() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
|
elif input_ids is not None: |
|
|
batch_size, seq_length = input_ids.shape |
|
|
elif inputs_embeds is not None: |
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
else: |
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
|
|
seq_length_with_past = seq_length |
|
|
past_key_values_length = 0 |
|
|
|
|
|
if past_key_values is not None: |
|
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
|
|
if position_ids is None: |
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
position_ids = torch.arange( |
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
|
) |
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
|
else: |
|
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
|
|
|
|
|
if attention_mask is None: |
|
|
attention_mask = torch.ones( |
|
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
|
) |
|
|
attention_mask = self._prepare_decoder_attention_mask( |
|
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
use_cache = False |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
|
|
layer_args = (hidden_states, attention_mask, position_ids,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
|
|
def create_custom_forward(module): |
|
|
def custom_forward(*inputs): |
|
|
|
|
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
|
|
return custom_forward |
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(decoder_layer), *layer_args |
|
|
) |
|
|
else: |
|
|
|
|
|
layer_outputs = decoder_layer(*layer_args, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|