|
|
import torch
|
|
|
import torchaudio
|
|
|
import random
|
|
|
import itertools
|
|
|
import numpy as np
|
|
|
from tools.mix import mix
|
|
|
|
|
|
|
|
|
def normalize_wav(waveform):
|
|
|
waveform = waveform - torch.mean(waveform)
|
|
|
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
|
|
|
return waveform * 0.5
|
|
|
|
|
|
|
|
|
def pad_wav(waveform, segment_length):
|
|
|
waveform_length = len(waveform)
|
|
|
|
|
|
if segment_length is None or waveform_length == segment_length:
|
|
|
return waveform
|
|
|
elif waveform_length > segment_length:
|
|
|
return waveform[:segment_length]
|
|
|
else:
|
|
|
pad_wav = torch.zeros(segment_length - waveform_length).to(waveform.device)
|
|
|
waveform = torch.cat([waveform, pad_wav])
|
|
|
return waveform
|
|
|
|
|
|
|
|
|
def _pad_spec(fbank, target_length=1024):
|
|
|
batch, n_frames, channels = fbank.shape
|
|
|
p = target_length - n_frames
|
|
|
if p > 0:
|
|
|
pad = torch.zeros(batch, p, channels).to(fbank.device)
|
|
|
fbank = torch.cat([fbank, pad], 1)
|
|
|
elif p < 0:
|
|
|
fbank = fbank[:, :target_length, :]
|
|
|
|
|
|
if channels % 2 != 0:
|
|
|
fbank = fbank[:, :, :-1]
|
|
|
|
|
|
return fbank
|
|
|
|
|
|
|
|
|
def read_wav_file(filename, segment_length):
|
|
|
waveform, sr = torchaudio.load(filename)
|
|
|
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)[0]
|
|
|
try:
|
|
|
waveform = normalize_wav(waveform)
|
|
|
except:
|
|
|
print ("Exception normalizing:", filename)
|
|
|
waveform = torch.ones(160000)
|
|
|
waveform = pad_wav(waveform, segment_length).unsqueeze(0)
|
|
|
waveform = waveform / torch.max(torch.abs(waveform))
|
|
|
waveform = 0.5 * waveform
|
|
|
return waveform
|
|
|
|
|
|
|
|
|
def get_mel_from_wav(audio, _stft):
|
|
|
audio = torch.nan_to_num(torch.clip(audio, -1, 1))
|
|
|
audio = torch.autograd.Variable(audio, requires_grad=False)
|
|
|
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
|
|
|
return melspec, log_magnitudes_stft, energy
|
|
|
|
|
|
|
|
|
def wav_to_fbank(paths, target_length=1024, fn_STFT=None):
|
|
|
assert fn_STFT is not None
|
|
|
|
|
|
waveform = torch.cat([read_wav_file(path, target_length * 160) for path in paths], 0)
|
|
|
|
|
|
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
|
|
fbank = fbank.transpose(1, 2)
|
|
|
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
|
|
|
|
|
|
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
|
|
log_magnitudes_stft, target_length
|
|
|
)
|
|
|
|
|
|
return fbank, log_magnitudes_stft, waveform
|
|
|
|
|
|
def wav_to_fbank2(waveform, target_length=-1, fn_STFT=None):
|
|
|
assert fn_STFT is not None
|
|
|
|
|
|
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
|
|
fbank = fbank.transpose(1, 2)
|
|
|
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
|
|
|
|
|
|
|
|
|
if(target_length>0):
|
|
|
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
|
|
log_magnitudes_stft, target_length
|
|
|
)
|
|
|
|
|
|
return fbank, log_magnitudes_stft, waveform
|
|
|
|
|
|
|
|
|
def uncapitalize(s):
|
|
|
if s:
|
|
|
return s[:1].lower() + s[1:]
|
|
|
else:
|
|
|
return ""
|
|
|
|
|
|
|
|
|
def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=1024):
|
|
|
sound1 = read_wav_file(path1, target_length * 160)[0].numpy()
|
|
|
sound2 = read_wav_file(path2, target_length * 160)[0].numpy()
|
|
|
mixed_sound = mix(sound1, sound2, 0.5, 16000).reshape(1, -1)
|
|
|
mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2))
|
|
|
return mixed_sound, mixed_caption
|
|
|
|
|
|
|
|
|
def augment(paths, texts, num_items=4, target_length=1024):
|
|
|
mixed_sounds, mixed_captions = [], []
|
|
|
combinations = list(itertools.combinations(list(range(len(texts))), 2))
|
|
|
random.shuffle(combinations)
|
|
|
if len(combinations) < num_items:
|
|
|
selected_combinations = combinations
|
|
|
else:
|
|
|
selected_combinations = combinations[:num_items]
|
|
|
|
|
|
for (i, j) in selected_combinations:
|
|
|
new_sound, new_caption = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length)
|
|
|
mixed_sounds.append(new_sound)
|
|
|
mixed_captions.append(new_caption)
|
|
|
|
|
|
waveform = torch.tensor(np.concatenate(mixed_sounds, 0))
|
|
|
waveform = waveform / torch.max(torch.abs(waveform))
|
|
|
waveform = 0.5 * waveform
|
|
|
|
|
|
return waveform, mixed_captions
|
|
|
|
|
|
|
|
|
def augment_wav_to_fbank(paths, texts, num_items=4, target_length=1024, fn_STFT=None):
|
|
|
assert fn_STFT is not None
|
|
|
|
|
|
waveform, captions = augment(paths, texts)
|
|
|
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
|
|
fbank = fbank.transpose(1, 2)
|
|
|
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
|
|
|
|
|
|
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
|
|
log_magnitudes_stft, target_length
|
|
|
)
|
|
|
|
|
|
return fbank, log_magnitudes_stft, waveform, captions |