seanpedrickcase commited on
Commit
f957de1
·
1 Parent(s): 71afe01

Added random seed to topic_core_funcs

Browse files
Files changed (1) hide show
  1. funcs/topic_core_funcs.py +3 -1
funcs/topic_core_funcs.py CHANGED
@@ -1,6 +1,6 @@
1
  # Dendrograms will not work with the latest version of scipy (1.12.0), so installing the version prior to be safe
2
  #os.system("pip install scipy==1.11.4")
3
-
4
  import gradio as gr
5
  from datetime import datetime
6
  import pandas as pd
@@ -26,6 +26,7 @@ from umap import UMAP
26
  umap_n_neighbours = 15
27
  umap_min_dist = 0.0
28
  umap_metric = 'cosine'
 
29
 
30
  today = datetime.now().strftime("%d%m%Y")
31
  today_rev = datetime.now().strftime("%Y%m%d")
@@ -545,6 +546,7 @@ def reduce_outliers(topic_model: BERTopic, docs: List[str], embeddings_out: np.n
545
 
546
  return output_text, output_list, topic_model
547
 
 
548
  def represent_topics(topic_model: BERTopic, docs: List[str], data_file_name_no_ext: str, high_quality_mode: str, save_topic_model: str, representation_type: str, vectoriser_model: CountVectorizer, split_sentence_drop: str, data: PandasDataFrame, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> tuple:
549
  """
550
  Represents topics using the specified representation model and updates the topic labels accordingly.
 
1
  # Dendrograms will not work with the latest version of scipy (1.12.0), so installing the version prior to be safe
2
  #os.system("pip install scipy==1.11.4")
3
+ import spaces
4
  import gradio as gr
5
  from datetime import datetime
6
  import pandas as pd
 
26
  umap_n_neighbours = 15
27
  umap_min_dist = 0.0
28
  umap_metric = 'cosine'
29
+ random_seed = 42
30
 
31
  today = datetime.now().strftime("%d%m%Y")
32
  today_rev = datetime.now().strftime("%Y%m%d")
 
546
 
547
  return output_text, output_list, topic_model
548
 
549
+ @spaces.GPU(duration=120)
550
  def represent_topics(topic_model: BERTopic, docs: List[str], data_file_name_no_ext: str, high_quality_mode: str, save_topic_model: str, representation_type: str, vectoriser_model: CountVectorizer, split_sentence_drop: str, data: PandasDataFrame, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> tuple:
551
  """
552
  Represents topics using the specified representation model and updates the topic labels accordingly.