Spaces:
Running
Running
Hopefully now LLM download from hub should work
Browse files- funcs/embeddings.py +0 -3
- funcs/representation_model.py +16 -8
funcs/embeddings.py
CHANGED
|
@@ -1,9 +1,6 @@
|
|
| 1 |
import time
|
| 2 |
import numpy as np
|
| 3 |
from torch import cuda
|
| 4 |
-
from sklearn.pipeline import make_pipeline
|
| 5 |
-
from sklearn.decomposition import TruncatedSVD
|
| 6 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 7 |
|
| 8 |
random_seed = 42
|
| 9 |
|
|
|
|
| 1 |
import time
|
| 2 |
import numpy as np
|
| 3 |
from torch import cuda
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
random_seed = 42
|
| 6 |
|
funcs/representation_model.py
CHANGED
|
@@ -3,7 +3,7 @@ from bertopic.representation import LlamaCPP
|
|
| 3 |
from llama_cpp import Llama
|
| 4 |
from pydantic import BaseModel
|
| 5 |
import torch.cuda
|
| 6 |
-
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation
|
| 9 |
from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start
|
|
@@ -119,17 +119,25 @@ def find_model_file(hf_model_name, hf_model_file, search_folder):
|
|
| 119 |
|
| 120 |
# Specify your custom directory
|
| 121 |
# Get HF_HOME environment variable or default to "~/.cache/huggingface/hub"
|
| 122 |
-
hf_home_value = search_folder
|
| 123 |
|
| 124 |
# Check if the directory exists, create it if it doesn't
|
| 125 |
-
if not os.path.exists(hf_home_value):
|
| 126 |
-
|
| 127 |
|
| 128 |
-
|
| 129 |
|
| 130 |
-
hf_hub_download(repo_id=hf_model_name, filename=hf_model_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
found_file = find_file(
|
| 133 |
return found_file
|
| 134 |
|
| 135 |
|
|
@@ -158,7 +166,7 @@ def create_representation_model(representation_type, llm_config, hf_model_name,
|
|
| 158 |
|
| 159 |
found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value)
|
| 160 |
|
| 161 |
-
llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx, rope_freq_scale=0.5) #**llm_config.model_dump())#
|
| 162 |
#print(llm.n_gpu_layers)
|
| 163 |
llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump())
|
| 164 |
|
|
|
|
| 3 |
from llama_cpp import Llama
|
| 4 |
from pydantic import BaseModel
|
| 5 |
import torch.cuda
|
| 6 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
| 7 |
|
| 8 |
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation
|
| 9 |
from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start
|
|
|
|
| 119 |
|
| 120 |
# Specify your custom directory
|
| 121 |
# Get HF_HOME environment variable or default to "~/.cache/huggingface/hub"
|
| 122 |
+
#hf_home_value = search_folder
|
| 123 |
|
| 124 |
# Check if the directory exists, create it if it doesn't
|
| 125 |
+
#if not os.path.exists(hf_home_value):
|
| 126 |
+
# os.makedirs(hf_home_value)
|
| 127 |
|
| 128 |
+
|
| 129 |
|
| 130 |
+
found_file = hf_hub_download(repo_id=hf_model_name, filename=hf_model_file)#, local_dir=hf_home_value) # cache_dir
|
| 131 |
+
|
| 132 |
+
#path = snapshot_download(
|
| 133 |
+
# repo_id=hf_model_name,
|
| 134 |
+
# allow_patterns="config.json",
|
| 135 |
+
# local_files_only=False
|
| 136 |
+
#)
|
| 137 |
+
|
| 138 |
+
print("Downloaded model to: ", found_file)
|
| 139 |
|
| 140 |
+
#found_file = find_file(path, file_to_find)
|
| 141 |
return found_file
|
| 142 |
|
| 143 |
|
|
|
|
| 166 |
|
| 167 |
found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value)
|
| 168 |
|
| 169 |
+
llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx, rope_freq_scale=0.5, seed=seed) #**llm_config.model_dump())#
|
| 170 |
#print(llm.n_gpu_layers)
|
| 171 |
llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump())
|
| 172 |
|