Update app.py
Browse files
app.py
CHANGED
|
@@ -76,8 +76,18 @@ model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
|
|
| 76 |
)
|
| 77 |
|
| 78 |
|
|
|
|
|
|
|
|
|
|
| 79 |
#
|
| 80 |
model = accelerator.prepare(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })
|
|
@@ -111,24 +121,35 @@ def respond(
|
|
| 111 |
|
| 112 |
messages= json_obj
|
| 113 |
|
| 114 |
-
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
|
| 115 |
-
input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
|
| 116 |
-
print(f"Converted input_ids dtype: {input_ids.dtype}")
|
| 117 |
-
input_str= str(input_ids2)
|
| 118 |
-
print('input str = ', input_str)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
yield gen_text
|
| 134 |
|
|
|
|
| 76 |
)
|
| 77 |
|
| 78 |
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
#
|
| 83 |
model = accelerator.prepare(model)
|
| 84 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 85 |
+
|
| 86 |
+
pipe = pipeline(
|
| 87 |
+
"text-generation",
|
| 88 |
+
model=model,
|
| 89 |
+
tokenizer=tokenizer,
|
| 90 |
+
)
|
| 91 |
|
| 92 |
|
| 93 |
# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })
|
|
|
|
| 121 |
|
| 122 |
messages= json_obj
|
| 123 |
|
| 124 |
+
# input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
|
| 125 |
+
# input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
|
| 126 |
+
# print(f"Converted input_ids dtype: {input_ids.dtype}")
|
| 127 |
+
# input_str= str(input_ids2)
|
| 128 |
+
# print('input str = ', input_str)
|
| 129 |
+
|
| 130 |
+
generation_args = {
|
| 131 |
+
"max_new_tokens": max_tokens,
|
| 132 |
+
"return_full_text": False,
|
| 133 |
+
"temperature": temperature,
|
| 134 |
+
"do_sample": False,
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
output = pipe(messages, **generation_args)
|
| 138 |
+
print(output[0]['generated_text'])
|
| 139 |
+
gen_text=output[0]['generated_text']
|
| 140 |
+
|
| 141 |
+
# with torch.no_grad():
|
| 142 |
+
# gen_tokens = model.generate(
|
| 143 |
+
# input_ids,
|
| 144 |
+
# max_new_tokens=max_tokens,
|
| 145 |
+
# # do_sample=True,
|
| 146 |
+
# temperature=temperature,
|
| 147 |
+
# )
|
| 148 |
+
|
| 149 |
+
# gen_text = tokenizer.decode(gen_tokens[0])
|
| 150 |
+
# print(gen_text)
|
| 151 |
+
# gen_text= gen_text.replace(input_str,'')
|
| 152 |
+
# gen_text= gen_text.replace('<|im_end|>','')
|
| 153 |
|
| 154 |
yield gen_text
|
| 155 |
|