|
|
import gradio as gr |
|
|
import spaces |
|
|
import torch |
|
|
from torch.cuda.amp import autocast |
|
|
import subprocess |
|
|
from huggingface_hub import InferenceClient |
|
|
import os |
|
|
import psutil |
|
|
|
|
|
import json |
|
|
import subprocess |
|
|
from threading import Thread |
|
|
|
|
|
import torch |
|
|
import spaces |
|
|
import gradio as gr |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer |
|
|
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
|
|
|
|
|
""" |
|
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
|
""" |
|
|
|
|
|
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch |
|
|
from accelerate import Accelerator |
|
|
|
|
|
|
|
|
subprocess.run( |
|
|
"pip install psutil", |
|
|
|
|
|
shell=True, |
|
|
) |
|
|
|
|
|
import bitsandbytes as bnb |
|
|
|
|
|
|
|
|
|
|
|
from datetime import datetime |
|
|
|
|
|
|
|
|
subprocess.run( |
|
|
"pip install flash-attn --no-build-isolation", |
|
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
|
shell=True, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
token=os.getenv('token') |
|
|
print('token = ',token) |
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import transformers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B" |
|
|
CHAT_TEMPLATE = "َAuto" |
|
|
MODEL_NAME = MODEL_ID.split("/")[-1] |
|
|
CONTEXT_LENGTH = 16000 |
|
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
quantization_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
|
) |
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MODEL_ID, |
|
|
device_map="auto", |
|
|
low_cpu_mem_usage=True, |
|
|
torch_dtype=torch.bfloat16, |
|
|
|
|
|
attn_implementation="flash_attention_2", |
|
|
) |
|
|
|
|
|
accelerator = Accelerator() |
|
|
|
|
|
model = accelerator.prepare(model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
|
|
def str_to_json(str_obj): |
|
|
json_obj = json.loads(str_obj) |
|
|
return json_obj |
|
|
|
|
|
|
|
|
@spaces.GPU(duration=60) |
|
|
def respond( |
|
|
message, |
|
|
history: list[tuple[str, str]], |
|
|
system_message, |
|
|
max_tokens, |
|
|
temperature, |
|
|
top_p): |
|
|
|
|
|
stop_tokens = ["<|endoftext|>", "<|im_end|>"] |
|
|
instruction = '<|im_start|>system\n' + system_message + '\n<|im_end|>\n' |
|
|
for user, assistant in history: |
|
|
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' |
|
|
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' |
|
|
|
|
|
print(instruction) |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) |
|
|
input_ids, attention_mask = enc.input_ids, enc.attention_mask |
|
|
|
|
|
if input_ids.shape[1] > CONTEXT_LENGTH: |
|
|
input_ids = input_ids[:, -CONTEXT_LENGTH:] |
|
|
attention_mask = attention_mask[:, -CONTEXT_LENGTH:] |
|
|
|
|
|
generate_kwargs = dict( |
|
|
input_ids=input_ids.to(device), |
|
|
attention_mask=attention_mask.to(device), |
|
|
streamer=streamer, |
|
|
do_sample=True, |
|
|
temperature=temperature, |
|
|
max_new_tokens=max_tokens, |
|
|
top_k=40, |
|
|
repetition_penalty=1.1, |
|
|
top_p=0.95 |
|
|
) |
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
|
t.start() |
|
|
outputs = [] |
|
|
for new_token in streamer: |
|
|
print(new_token," ") |
|
|
outputs.append(new_token) |
|
|
if new_token in stop_tokens: |
|
|
break |
|
|
yield "".join(outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
|
""" |
|
|
demo = gr.ChatInterface( |
|
|
respond, |
|
|
additional_inputs=[ |
|
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
|
gr.Slider( |
|
|
minimum=0.1, |
|
|
maximum=1.0, |
|
|
value=0.95, |
|
|
step=0.05, |
|
|
label="Top-p (nucleus sampling)", |
|
|
), |
|
|
], |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |