File size: 3,919 Bytes
93ed498 e2ec341 f4903ba 93ed498 b43bcfd 93ed498 6390b56 06cc7e1 b43bcfd 6390b56 ec7e05a 84d8cd6 d1b5796 84d8cd6 d1b5796 84d8cd6 d1b5796 84d8cd6 29e7041 84d8cd6 29e7041 b5411ca 84d8cd6 b5411ca 195b309 2e30402 93ed498 84d8cd6 53b0265 b5411ca d1b5796 84d8cd6 195b309 84d8cd6 ec7e05a 84d8cd6 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import gradio as gr
import spaces
import torch
from huggingface_hub import InferenceClient
import os
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'
token=os.getenv('token')
print('token = ',token)
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_id = "mistralai/Mistral-7B-v0.3"
# model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
from airllm import AirLLMLlama2
MAX_LENGTH = 128
hf_hub_download(
repo_id="CohereForAI/c4ai-command-r-plus-4bit",
# filename="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
local_dir = "./models",
token= token
)
# could use hugging face model repo id:
model = AirLLMLlama2("./models", )
# tokenizer = AutoTokenizer.from_pretrained(model_id, token= token)
# model = AutoModelForCausalLM.from_pretrained(model_id, token= token, torch_dtype=torch.bfloat16,
# # attn_implementation="flash_attention_2",
# # low_cpu_mem_usage=True,
# device_map="auto"
# )
@spaces.GPU(duration=180)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
input_text = [
'What is the capital of United States?',
]
input_tokens = model.tokenizer(input_text,
return_tensors="pt",
return_attention_mask=False,
truncation=True,
max_length=MAX_LENGTH,
padding=True)
generation_output = model.generate(
input_tokens['input_ids'].cuda(),
max_new_tokens=20,
use_cache=True,
return_dict_in_generate=True)
output = model.tokenizer.decode(generation_output.sequences[0])
print(output)
yield output
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
# outputs = model.generate(inputs, max_new_tokens=2000)
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
# print(gen_text)
# yield gen_text
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |