File size: 3,919 Bytes
93ed498
e2ec341
f4903ba
 
93ed498
b43bcfd
93ed498
 
 
 
6390b56
 
06cc7e1
 
b43bcfd
 
6390b56
ec7e05a
 
84d8cd6
d1b5796
84d8cd6
d1b5796
84d8cd6
d1b5796
84d8cd6
29e7041
 
 
 
 
 
 
 
 
84d8cd6
29e7041
b5411ca
84d8cd6
 
 
 
 
 
 
 
b5411ca
195b309
 
2e30402
93ed498
 
 
 
 
 
 
 
84d8cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53b0265
b5411ca
d1b5796
 
 
 
 
 
84d8cd6
195b309
84d8cd6
 
ec7e05a
84d8cd6
 
6390b56
 
 
 
 
93ed498
6390b56
93ed498
6390b56
93ed498
6390b56
 
 
 
 
 
 
 
93ed498
6390b56
 
93ed498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import spaces
import torch

from huggingface_hub import InferenceClient
import os
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'



token=os.getenv('token')
print('token = ',token)

from transformers import AutoModelForCausalLM, AutoTokenizer

# model_id = "mistralai/Mistral-7B-v0.3"

# model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"

from airllm import AirLLMLlama2

MAX_LENGTH = 128


hf_hub_download(
    repo_id="CohereForAI/c4ai-command-r-plus-4bit",
    # filename="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
    local_dir = "./models",
    token= token
)

# could use hugging face model repo id:
model = AirLLMLlama2("./models", )


# tokenizer = AutoTokenizer.from_pretrained(model_id, token= token)

# model = AutoModelForCausalLM.from_pretrained(model_id, token= token, torch_dtype=torch.bfloat16,    
#                                              # attn_implementation="flash_attention_2",
#                                              # low_cpu_mem_usage=True,
#                                              device_map="auto"
#                                             )



@spaces.GPU(duration=180)
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    input_text = [
        'What is the capital of United States?',
    ]

    input_tokens = model.tokenizer(input_text,
    return_tensors="pt", 
    return_attention_mask=False, 
    truncation=True, 
    max_length=MAX_LENGTH, 
    padding=True)
           
    generation_output = model.generate(
    input_tokens['input_ids'].cuda(), 
    max_new_tokens=20,
    use_cache=True,
    return_dict_in_generate=True)

    output = model.tokenizer.decode(generation_output.sequences[0])

    print(output)
    yield output
    
  
    messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

    # inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

    # outputs = model.generate(inputs, max_new_tokens=2000)
    # gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
   
    # print(gen_text)
    # yield gen_text
    # for val in history:
    #     if val[0]:
    #         messages.append({"role": "user", "content": val[0]})
    #     if val[1]:
    #         messages.append({"role": "assistant", "content": val[1]})

    # messages.append({"role": "user", "content": message})

    # response = ""

    # for message in client.chat_completion(
    #     messages,
    #     max_tokens=max_tokens,
    #     stream=True,
    #     temperature=temperature,
    #     top_p=top_p,
    # ):
    #     token = message.choices[0].delta.content

    #     response += token
    #     yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()