| import torch | |
| import torch.nn as nn | |
| from torchvision import models | |
| class EfficientNetB4Classifier(nn.Module): | |
| def __init__(self, train_base=False): | |
| super().__init__() | |
| self.base_model = models.efficientnet_b4(weights=models.EfficientNet_B4_Weights.DEFAULT) | |
| for param in self.base_model.features.parameters(): | |
| param.requires_grad = train_base | |
| self.classifier = nn.Sequential( | |
| nn.BatchNorm1d(1792), | |
| nn.Dropout(0.5), | |
| nn.Linear(1792, 256), | |
| nn.ReLU(), | |
| nn.BatchNorm1d(256), | |
| nn.Dropout(0.5), | |
| nn.Linear(256, 1), | |
| nn.Sigmoid() | |
| ) | |
| def forward(self, x): | |
| x = self.base_model.features(x) | |
| x = self.base_model.avgpool(x) | |
| x = torch.flatten(x, 1) | |
| return self.classifier(x) | |