File size: 87,890 Bytes
762811e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da9ed4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
import argparse
import json
import math
import os
import sys
import numpy as np
from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from contextlib import nullcontext
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset

try:
    from torch.amp import autocast as _autocast, GradScaler as _GradScaler

    def betina_autocast(device_type: str, enabled: bool = True):
        if not enabled or device_type != "cuda":
            return nullcontext()
        return _autocast(device_type=device_type, enabled=enabled)

    def betina_grad_scaler(device_type: str, enabled: bool = True):
        if not enabled or device_type != "cuda":
            return _NoOpGradScaler()
        return _GradScaler(device_type=device_type, enabled=enabled)

except ImportError:  # pragma: no cover
    from torch.cuda.amp import autocast as _autocast, GradScaler as _GradScaler

    def betina_autocast(device_type: str, enabled: bool = True):
        if not enabled or device_type != "cuda":
            return nullcontext()
        return _autocast(enabled=enabled)

    def betina_grad_scaler(device_type: str, enabled: bool = True):
        if not enabled or device_type != "cuda":
            return _NoOpGradScaler()
        return _GradScaler(enabled=enabled)

try:
    from sentence_transformers import SentenceTransformer
except ImportError as exc:  # pragma: no cover
    raise ImportError("Install sentence-transformers to run the Betina pipeline") from exc

try:
    from transformers import AutoModelForMaskedLM, AutoTokenizer
except ImportError as exc:  # pragma: no cover
    raise ImportError("Install transformers to run the Betina pipeline") from exc

try:
    from datasets import load_dataset  # type: ignore[import-not-found]
except ImportError:  # pragma: no cover
    load_dataset = None


def _safe_load_dataset(
    path: str,
    name: Optional[str],
    *,
    split: str,
    hf_token: Optional[str],
    trust_remote_code: bool,
):
    if load_dataset is None:
        raise ImportError("Install the 'datasets' package to use Hugging Face corpora")
    base_kwargs = {"split": split, "trust_remote_code": trust_remote_code}
    attempts: List[Dict[str, Optional[str]]] = []
    if hf_token:
        attempts.append({"token": hf_token})
        attempts.append({"use_auth_token": hf_token})
    attempts.append({})
    last_error: Optional[Exception] = None
    for extra in attempts:
        try:
            return load_dataset(path, name, **base_kwargs, **extra)
        except TypeError as err:
            last_error = err
            continue
        except ValueError as err:
            if "use_auth_token" in str(err).lower():
                last_error = err
                continue
            raise
    if last_error:
        raise last_error
    raise RuntimeError(f"Falha ao carregar dataset {path}/{name}")


def _read_hf_token_file(path: Path) -> Optional[str]:
    try:
        content = path.read_text(encoding="utf-8").strip()
    except OSError:
        return None
    if not content:
        return None
    first_line = content.splitlines()[0].strip()
    return first_line or None


def resolve_hf_token(explicit_token: Optional[str], token_file: Optional[str]) -> Tuple[Optional[str], Optional[str]]:
    """Resolve o token HF preferindo argumento, env vars e arquivo do huggingface-cli."""
    if explicit_token and explicit_token.strip():
        return explicit_token.strip(), "--hf-token"
    env_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
    if env_token and env_token.strip():
        return env_token.strip(), "env"
    file_candidates: List[Path] = []
    if token_file:
        file_candidates.append(Path(token_file).expanduser())
    else:
        hf_home = os.getenv("HF_HOME")
        if hf_home:
            file_candidates.append(Path(hf_home).expanduser() / "token")
        file_candidates.append(Path.home() / ".cache" / "huggingface" / "token")
        file_candidates.append(Path.home() / ".huggingface" / "token")
    for candidate in file_candidates:
        token = _read_hf_token_file(candidate)
        if token:
            return token, str(candidate)
    return None, None


class _NoOpGradScaler:
    def __init__(self):
        pass

    def scale(self, loss):
        return loss

    def step(self, optimizer):
        optimizer.step()

    def update(self):
        pass

    def unscale_(self, optimizer):
        pass

    def state_dict(self):
        return {}

    def load_state_dict(self, state):
        pass


class CallableAgentAdapter(nn.Module):
    def __init__(self, fn: Callable[[torch.Tensor], torch.Tensor], name: str):
        super().__init__()
        self.fn = fn
        self.agent_name = name or getattr(fn, "__name__", "callable_agent")

    def forward(self, tensor: torch.Tensor) -> torch.Tensor:  # noqa: D401
        return self.fn(tensor)


class MultiIntelligenceRouter(nn.Module):
    """Despacha cada estágio do fluxo matriz para IAs distintas por stream/etapa."""

    def __init__(
        self,
        num_streams: int,
        *,
        stage_config: Optional[Dict[str, Dict[str, nn.Module]]] = None,
        stream_aliases: Optional[List[str]] = None,
    ):
        super().__init__()
        self.num_streams = num_streams
        self.stream_aliases = stream_aliases or [f"S{idx}" for idx in range(num_streams)]
        self.stage_modules = nn.ModuleDict()
        self.stage_logs: Dict[str, List[Dict[str, str]]] = {}
        if stage_config:
            self.apply_stage_config(stage_config)

    def apply_stage_config(self, stage_config: Dict[str, Dict[str, nn.Module]]) -> None:
        for stage_name, mapping in stage_config.items():
            module_dict = nn.ModuleDict()
            for key, module in mapping.items():
                module_dict[str(key)] = self._wrap_module(stage_name, key, module)
            self.stage_modules[stage_name] = module_dict

    def register_stage(self, stage_name: str, mapping: Dict[str, nn.Module]) -> None:
        module_dict = nn.ModuleDict()
        for key, module in mapping.items():
            module_dict[str(key)] = self._wrap_module(stage_name, key, module)
        self.stage_modules[stage_name] = module_dict

    def _wrap_module(self, stage: str, key: str | int, module: nn.Module | Callable) -> nn.Module:
        if isinstance(module, list):
            wrapped = [self._wrap_module(stage, f"{key}_{idx}", item) for idx, item in enumerate(module)]
            seq = nn.Sequential(*wrapped)
            if not hasattr(seq, "agent_name"):
                seq.agent_name = f"seq_{stage}_{key}"
            return seq
        if isinstance(module, nn.Module):
            if not hasattr(module, "agent_name"):
                module.agent_name = module.__class__.__name__
            return module
        if callable(module):
            name = getattr(module, "agent_name", None) or getattr(module, "__name__", f"{stage}_{key}_fn")
            return CallableAgentAdapter(module, name)
        raise TypeError(f"Módulo IA inválido para estágio {stage}/{key}: {type(module)}")

    def _select_module(self, stage_dict: nn.ModuleDict, key: str | int | None) -> Optional[nn.Module]:
        if key is not None:
            candidate_key = str(key)
            if candidate_key in stage_dict:
                return stage_dict[candidate_key]
        for fallback in ("*", "default", "-1"):
            if fallback in stage_dict:
                return stage_dict[fallback]
        return None

    def apply(self, stage: str, tensor: torch.Tensor, *, cycle_idx: Optional[int] = None) -> torch.Tensor:
        stage_dict = self.stage_modules[stage] if stage in self.stage_modules else None
        log: List[Dict[str, str]] = []
        if stage_dict is None:
            self.stage_logs[stage] = log
            return tensor
        if tensor.dim() == 3:
            outputs = []
            for stream_idx in range(tensor.size(1)):
                module = self._select_module(stage_dict, stream_idx)
                if module is None and stream_idx < len(self.stream_aliases):
                    module = self._select_module(stage_dict, self.stream_aliases[stream_idx])
                chunk = tensor[:, stream_idx, :]
                if module is not None:
                    chunk = module(chunk)
                    log.append(
                        {
                            "stream": self.stream_aliases[stream_idx] if stream_idx < len(self.stream_aliases) else str(stream_idx),
                            "agent": getattr(module, "agent_name", module.__class__.__name__),
                        }
                    )
                outputs.append(chunk)
            stacked = torch.stack(outputs, dim=1)
            self.stage_logs[stage] = log
            return stacked
        module = None
        if cycle_idx is not None:
            module = self._select_module(stage_dict, cycle_idx)
        if module is None:
            module = self._select_module(stage_dict, "global")
        if module is None:
            module = self._select_module(stage_dict, None)
        if module is None:
            self.stage_logs[stage] = log
            return tensor
        updated = module(tensor)
        alias = f"cycle_{cycle_idx}" if cycle_idx is not None else "global"
        log.append({"stream": alias, "agent": getattr(module, "agent_name", module.__class__.__name__)})
        self.stage_logs[stage] = log
        return updated

    def stage_signature(self, stage: str) -> str:
        logs = self.stage_logs.get(stage, [])
        if not logs:
            return "identity"
        return " | ".join(f"{entry['stream']}{entry['agent']}" for entry in logs)

    def describe_all_stages(self) -> Dict[str, List[Dict[str, str]]]:
        return {stage: list(entries) for stage, entries in self.stage_logs.items()}


class SyntheticNeuronTriangle(nn.Module):
    """Refina deltas considerando uma base triangular (X,Y,contrabase)."""

    def __init__(
        self,
        embed_dim: int,
        num_streams: int,
        *,
        hidden_dim: int = 512,
        max_iters: int = 5,
        tol: float = 1e-4,
        delta_gain: float = 1.0,
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim
        self.num_streams = num_streams
        self.max_iters = max(0, max_iters)
        self.tol = max(1e-6, tol)
        self.delta_gain = float(delta_gain)
        seed_in = embed_dim * 4  # X, Y, contrabase média, diagonal
        refine_in = embed_dim * 3  # delta médio, eixo integrado, diagonal
        self.seed_proj = nn.Sequential(
            nn.LayerNorm(seed_in),
            nn.Linear(seed_in, hidden_dim),
            nn.GELU(),
            nn.Linear(hidden_dim, embed_dim),
        )
        self.refine_proj = nn.Sequential(
            nn.LayerNorm(refine_in),
            nn.Linear(refine_in, hidden_dim),
            nn.SiLU(),
            nn.Linear(hidden_dim, embed_dim),
        )

    def forward(
        self,
        mat_primary: torch.Tensor,
        mat_secondary: torch.Tensor,
        base_core: torch.Tensor,
    ) -> Tuple[torch.Tensor, Dict[str, object]]:
        batch, streams, dim = mat_primary.shape
        x_stream = mat_primary[:, 0, :]
        y_stream = mat_primary[:, 1, :] if streams > 1 else mat_secondary[:, 0, :]
        contra_stream = mat_secondary[:, 0, :]
        contra_mean = mat_secondary.mean(dim=1)
        base_center = torch.stack([x_stream, y_stream], dim=1).mean(dim=1)
        diag = torch.stack([x_stream - contra_stream, y_stream - contra_mean], dim=1).mean(dim=1)
        seed_features = torch.cat([base_center, contra_mean, base_core.squeeze(1), diag], dim=-1)
        axis_vector = torch.tanh(self.seed_proj(seed_features))
        axis_norm = F.normalize(axis_vector, dim=-1)
        base_delta = mat_primary - base_core
        stream_align = torch.sum(
            F.normalize(mat_primary, dim=-1) * axis_norm.unsqueeze(1),
            dim=-1,
            keepdim=True,
        )
        axis_component = axis_norm.unsqueeze(1) * stream_align
        delta = base_delta + self.delta_gain * axis_component
        iterations = 0
        last_change = torch.zeros(1, device=mat_primary.device)
        if self.max_iters > 0:
            for idx in range(self.max_iters):
                delta_mean = delta.mean(dim=1)
                refine_inp = torch.cat([delta_mean, axis_vector, diag], dim=-1)
                refine = torch.tanh(self.refine_proj(refine_inp)).unsqueeze(1)
                delta = delta + refine
                last_change = refine.norm(dim=-1).mean()
                iterations = idx + 1
                if last_change.item() < self.tol:
                    break
        debug = {
            "axis": axis_vector.detach(),
            "diag": diag.detach(),
            "iterations": iterations,
            "residual": float(last_change.detach().item()),
        }
        return delta, debug


def build_builtin_agent(name: str, embed_dim: int) -> nn.Module:
    normalized = name.strip().lower()
    if normalized in {"brock", "brockman", "brock ia"}:
        module = nn.Sequential(
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim, embed_dim * 2),
            nn.GELU(),
            nn.Linear(embed_dim * 2, embed_dim),
        )
    elif normalized in {"chatgpt", "chatgpt 5.1", "chatgpt5.1", "gpt51"}:
        module = nn.Sequential(
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim, embed_dim),
            nn.SiLU(),
            nn.Linear(embed_dim, embed_dim),
        )
    elif normalized in {"code", "code ia", "coder"}:
        module = nn.Sequential(
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim, embed_dim),
        )
    elif normalized in {"critic", "mirror", "refiner"}:
        module = nn.Sequential(
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim, embed_dim * 3 // 2),
            nn.GELU(),
            nn.Linear(embed_dim * 3 // 2, embed_dim),
            nn.LayerNorm(embed_dim),
        )
    elif normalized in {"identity", "none"}:
        module = nn.Identity()
    else:
        raise ValueError(f"Agente IA desconhecido: {name}")
    module.agent_name = name
    return module


def _build_custom_agent(agent_def: Dict[str, object], embed_dim: int) -> nn.Module:
    if "style" in agent_def:
        module = build_builtin_agent(str(agent_def["style"]), embed_dim)
        module.agent_name = str(agent_def.get("name", agent_def["style"]))
        return module
    agent_type = str(agent_def.get("type", "mlp")).lower()
    hidden = int(agent_def.get("hidden", embed_dim * 2))
    dropout = float(agent_def.get("dropout", 0.0))
    if agent_type == "mlp":
        layers: List[nn.Module] = [
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim, hidden),
            nn.GELU(),
        ]
        if dropout > 0:
            layers.append(nn.Dropout(dropout))
        layers.append(nn.Linear(hidden, embed_dim))
        module = nn.Sequential(*layers)
    elif agent_type == "linear":
        module = nn.Sequential(nn.LayerNorm(embed_dim), nn.Linear(embed_dim, embed_dim))
    else:
        raise ValueError(f"Tipo de agente custom '{agent_type}' não suportado")
    module.agent_name = str(agent_def.get("name", agent_type))
    return module


def load_ia_config_file(path: str, embed_dim: int) -> Dict[str, object]:
    data = json.loads(Path(path).read_text(encoding="utf-8"))
    stage_entries = data.get("stages", {})
    if not isinstance(stage_entries, dict):
        raise ValueError("Campo 'stages' do arquivo IA precisa ser um objeto mapeando estágio→streams")
    stage_config: Dict[str, Dict[str, nn.Module]] = {}
    for stage, mapping in stage_entries.items():
        if not isinstance(mapping, dict):
            raise ValueError(f"Estágio '{stage}' precisa mapear streams para agentes")
        stage_config[stage] = {}
        for stream_key, agent_def in mapping.items():
            if isinstance(agent_def, str):
                module = build_builtin_agent(agent_def, embed_dim)
            elif isinstance(agent_def, dict):
                module = _build_custom_agent(agent_def, embed_dim)
            else:
                raise ValueError(f"Agente inválido para estágio '{stage}' stream '{stream_key}'")
            stage_config[stage][str(stream_key)] = module
    stream_aliases = data.get("stream_aliases")
    if stream_aliases is not None and (not isinstance(stream_aliases, list) or not all(isinstance(x, str) for x in stream_aliases)):
        raise ValueError("'stream_aliases' deve ser uma lista de strings")
    return {
        "stream_aliases": stream_aliases,
        "stage_config": stage_config,
        "refinement_cycles": int(data.get("refinement_cycles", 0)),
        "cycle_stage_name": str(data.get("cycle_stage_name", "cycle")),
    }


# --------------------------
# Lorenz attractor generator (discrete)
# --------------------------
def lorenz_step(x, y, z, sigma=10.0, rho=28.0, beta=8/3, dt=0.01):
    dx = sigma * (y - x)
    dy = x * (rho - z) - y
    dz = x * y - beta * z
    xn = x + dx * dt
    yn = y + dy * dt
    zn = z + dz * dt
    return xn, yn, zn

def lorenz_sequence(length, init=(0.1, 0.0, 0.0), sigma=10.0, rho=28.0, beta=8/3, dt=0.01):
    x, y, z = init
    seq = []
    for _ in range(length):
        x, y, z = lorenz_step(x, y, z, sigma, rho, beta, dt)
        seq.append((x, y, z))
    return np.array(seq)  # shape (length, 3)


# --------------------------
# Rössler attractor (alternative chaos source)
# --------------------------
def rossler_step(x, y, z, a=0.2, b=0.2, c=5.7, dt=0.01):
    dx = -y - z
    dy = x + a * y
    dz = b + z * (x - c)
    xn = x + dx * dt
    yn = y + dy * dt
    zn = z + dz * dt
    return xn, yn, zn

def rossler_sequence(length, init=(0.1, 0.0, 0.0), a=0.2, b=0.2, c=5.7, dt=0.01):
    x, y, z = init
    seq = []
    for _ in range(length):
        x, y, z = rossler_step(x, y, z, a, b, c, dt)
        seq.append((x, y, z))
    return np.array(seq)


# --------------------------
# Terminal Velocity Matching (Flow Matching inspired)
# --------------------------
def compute_terminal_velocity(embeddings: torch.Tensor, target_distribution: str = "gaussian") -> torch.Tensor:
    """
    Calcula a velocidade terminal para mover embeddings em direção a uma distribuição alvo.
    Inspirado em Flow Matching / Rectified Flow.
    """
    batch_size, dim = embeddings.shape
    if target_distribution == "gaussian":
        # Alvo: Gaussiana isotrópica padrão
        target = torch.randn_like(embeddings) * 0.1
    elif target_distribution == "uniform_sphere":
        # Alvo: superfície de esfera unitária
        target = F.normalize(torch.randn_like(embeddings), dim=-1)
    else:
        target = torch.zeros_like(embeddings)
    
    # Velocidade = direção do alvo - posição atual (normalizada)
    velocity = target - embeddings
    velocity = F.normalize(velocity, dim=-1) * embeddings.norm(dim=-1, keepdim=True) * 0.1
    return velocity


# --------------------------
# Spectral Energy Regularization
# --------------------------
def spectral_energy_loss(embeddings: torch.Tensor, target_rank: int = 32) -> torch.Tensor:
    """
    Penaliza energia concentrada em poucos componentes principais.
    Força distribuição mais uniforme do espectro singular.
    """
    if embeddings.shape[0] < 2:
        return torch.tensor(0.0, device=embeddings.device)
    
    centered = embeddings - embeddings.mean(dim=0, keepdim=True)
    # SVD para obter valores singulares
    try:
        _, s, _ = torch.linalg.svd(centered, full_matrices=False)
    except RuntimeError:
        return torch.tensor(0.0, device=embeddings.device)
    
    # Normaliza para distribuição de energia
    s_normalized = s / (s.sum() + 1e-8)
    
    # Entropia do espectro (queremos maximizar = distribuição uniforme)
    spectral_entropy = -(s_normalized * (s_normalized + 1e-8).log()).sum()
    
    # Penalidade: quanto menor a entropia, maior a penalidade
    max_entropy = math.log(min(embeddings.shape[0], embeddings.shape[1]))
    return (max_entropy - spectral_entropy) / max_entropy


# --------------------------
# Semantic Divergence Metrics
# --------------------------
def compute_angular_divergence(original: torch.Tensor, perturbed: torch.Tensor) -> float:
    """Calcula a divergência angular média entre vetores originais e perturbados."""
    cos_sim = F.cosine_similarity(original, perturbed, dim=-1)
    # Clamp para evitar problemas numéricos com acos
    cos_sim = cos_sim.clamp(-1.0, 1.0)
    angles = torch.acos(cos_sim)
    return angles.mean().item()


def compute_semantic_entropy(logits: torch.Tensor, top_k: int = 10) -> float:
    """Calcula a entropia semântica da distribuição de probabilidade."""
    probs = F.softmax(logits, dim=-1)
    top_probs, _ = torch.topk(probs, min(top_k, probs.shape[-1]), dim=-1)
    # Renormaliza top-k
    top_probs = top_probs / (top_probs.sum(dim=-1, keepdim=True) + 1e-8)
    entropy = -(top_probs * (top_probs + 1e-8).log()).sum(dim=-1)
    return entropy.mean().item()


# --------------------------
# SIGReg-like regularizer (encourage isotropic Gaussian embeddings)
# --------------------------
def sigreg_loss(embeddings):
    # embeddings: (B, D)
    mu = embeddings.mean(dim=0)                # (D,)
    centered = embeddings - mu.unsqueeze(0)    # (B, D)
    # empirical covariance (D x D) approx via (centered^T center)
    B = embeddings.shape[0]
    cov = (centered.t() @ centered) / (B - 1 + 1e-8)  # (D, D)
    # penalty = norm(cov - I) + norm(mu)
    D = embeddings.shape[1]
    eye = torch.eye(D, device=embeddings.device)
    cov_pen = F.mse_loss(cov, eye)
    mu_pen = (mu.pow(2)).mean()
    return cov_pen + mu_pen


class VortexBetinaAntiHalluc(nn.Module):
    def __init__(
        self,
        embed_dim: int = 256,
        vortex_steps: int = 10,
        vortex_dt: float = 0.02,
        num_streams: int = 3,
        enable_rotation: bool = True,
        rotation_angle: float = math.pi / 4,
        rotation_threshold: float = 1e-4,
        rotation_clockwise: bool = False,
        enable_quadratic_reflection: bool = False,
        quadratic_boundary: float = 0.3,
        quadratic_strength: float = 0.5,
        boost_small_deltas: bool = True,
        delta_gain: float = 1.5,
        reflection_push: float = 0.25,
        stream_aliases: Optional[List[str]] = None,
        ia_stage_config: Optional[Dict[str, Dict[str, nn.Module]]] = None,
        refinement_cycles: int = 0,
        cycle_stage_name: str = "cycle",
        enforce_square_geometry: bool = True,
        square_rotation_degrees: float = 180.0,
        square_leak_ratio: float = 0.05,
        square_jitter_std_degrees: float = 0.0,
        enable_lorentz_transform: bool = False,
        lorentz_beta: float = 0.6,
        lorentz_axis_stream: int = 0,
        enable_triangle: bool = True,
        triangle_hidden_dim: int = 512,
        triangle_max_iters: int = 5,
        triangle_tol: float = 1e-4,
        triangle_delta_gain: float = 1.0,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.vortex_steps = vortex_steps
        self.vortex_dt = vortex_dt
        self.num_streams = max(1, num_streams)
        self.enable_rotation = enable_rotation
        self.rotation_angle = rotation_angle
        self.rotation_threshold = rotation_threshold
        self.rotation_clockwise = rotation_clockwise
        self.enable_quadratic_reflection = enable_quadratic_reflection
        self.quadratic_boundary = nn.Parameter(torch.tensor(float(quadratic_boundary)))
        self.quadratic_strength = float(min(1.0, max(0.0, quadratic_strength)))
        self.boost_small_deltas = boost_small_deltas
        self.delta_gain = max(1.0, delta_gain)
        self.reflection_push = max(0.0, reflection_push)
        self.stream_aliases = self._prepare_stream_aliases(stream_aliases)
        self.refinement_cycles = max(0, refinement_cycles)
        self.cycle_stage_name = cycle_stage_name or "cycle"
        self.enforce_square_geometry = enforce_square_geometry
        self.square_rotation_radians = math.radians(square_rotation_degrees)
        self.square_leak_ratio = float(min(1.0, max(0.0, square_leak_ratio)))
        self.square_jitter_std = math.radians(max(0.0, square_jitter_std_degrees))
        beta = max(-0.999, min(0.999, lorentz_beta))
        self.enable_lorentz_transform = enable_lorentz_transform
        self.lorentz_beta = beta
        self.lorentz_axis_stream = max(0, lorentz_axis_stream)
        self.enable_triangle = enable_triangle
        self.ia_router = MultiIntelligenceRouter(
            num_streams=self.num_streams,
            stage_config=ia_stage_config,
            stream_aliases=self.stream_aliases,
        )
        self.triangle_module = (
            SyntheticNeuronTriangle(
                embed_dim,
                self.num_streams,
                hidden_dim=triangle_hidden_dim,
                max_iters=triangle_max_iters,
                tol=triangle_tol,
                delta_gain=triangle_delta_gain,
            )
            if self.enable_triangle
            else None
        )
        self.projector = nn.Sequential(
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim, embed_dim),
        )
        nn.init.kaiming_normal_(self.projector[1].weight, mode="fan_out", nonlinearity="relu")
        nn.init.constant_(self.projector[1].bias, 0.1)

        # Vortex Dynamics Parameters (Chaos Injection)
        self.vortex_linear = nn.Parameter(torch.randn(3, embed_dim) * 0.1)
        self.vortex_scale = nn.Parameter(torch.ones(embed_dim))
        
        # Terminal Velocity Matching parameters
        self.velocity_gate = nn.Parameter(torch.zeros(embed_dim))
        self.velocity_bias = nn.Parameter(torch.zeros(embed_dim))
        
        # Adaptive chaos parameters
        self.chaos_temperature = nn.Parameter(torch.tensor(1.0))
        self.chaos_gate = nn.Parameter(torch.tensor(0.0))
        self.attractor_selector = nn.Parameter(torch.tensor([0.7, 0.3]))  # [lorenz, rossler]

        self.last_flow_states: Dict[str, object] = {}

    def _prepare_stream_aliases(self, provided: Optional[List[str]]) -> List[str]:
        if provided:
            aliases = list(provided)
        else:
            aliases = ["X", "Y", "Z", "W", "V", "U", "T", "S"]
        if len(aliases) < self.num_streams:
            aliases.extend(f"S{idx}" for idx in range(len(aliases), self.num_streams))
        return aliases[: self.num_streams]

    def _rotate_matrix_plane(self, tensor: torch.Tensor, radians: float) -> torch.Tensor:
        if tensor.shape[-1] < 2:
            return tensor
        angle = radians % (2 * math.pi)
        if abs(angle) < 1e-9:
            return tensor
        rotated = tensor.clone()
        cos_theta = math.cos(angle)
        sin_theta = math.sin(angle)
        x = tensor[..., 0]
        y = tensor[..., 1]
        rotated[..., 0] = cos_theta * x - sin_theta * y
        rotated[..., 1] = sin_theta * x + cos_theta * y
        return rotated

    def _rotate_matrix_square(self, tensor: torch.Tensor) -> Tuple[torch.Tensor, float]:
        base_angle = abs(self.square_rotation_radians) % (2 * math.pi)
        if base_angle > math.pi:
            base_angle = 2 * math.pi - base_angle
        jitter = 0.0
        if self.square_jitter_std > 0:
            jitter = torch.randn(1, device=tensor.device).item() * self.square_jitter_std
        angle = max(0.0, min(math.pi, base_angle + jitter))
        if math.isclose(angle, 0.0, rel_tol=1e-6, abs_tol=1e-6):
            mirrored = tensor.clone()
        else:
            intensity = angle / math.pi
            mirrored = torch.lerp(tensor, -tensor, intensity)
        if self.square_leak_ratio > 0:
            mirrored = torch.lerp(mirrored, tensor, self.square_leak_ratio)
        return mirrored, angle

    def _select_axis_stream(self, tensor: torch.Tensor) -> torch.Tensor:
        stream_idx = min(self.lorentz_axis_stream, tensor.size(1) - 1)
        return tensor[:, stream_idx, :]

    def _lorentz_boost(
        self,
        spatial: torch.Tensor,
        reference_stream: torch.Tensor,
        time_like: torch.Tensor,
    ) -> Tuple[torch.Tensor, float, torch.Tensor]:
        beta = self.lorentz_beta
        gamma = 1.0 / math.sqrt(max(1e-8, 1.0 - beta**2))
        axis = F.normalize(reference_stream, dim=-1, eps=1e-6)
        parallel_scalar = torch.sum(spatial * axis, dim=-1, keepdim=True)
        parallel_vec = parallel_scalar * axis
        perpendicular_vec = spatial - parallel_vec
        t_prime = gamma * (time_like - beta * parallel_scalar)
        parallel_prime = gamma * (parallel_scalar - beta * time_like) * axis
        updated_spatial = parallel_prime + perpendicular_vec
        return updated_spatial, gamma, t_prime.abs()

    def invert(self, vec: torch.Tensor) -> torch.Tensor:
        return -vec

    def intersection_knowledge(self, vec: torch.Tensor, base_k: torch.Tensor) -> torch.Tensor:
        dot = torch.sum(vec * base_k, dim=-1, keepdim=True)
        norm_k = torch.norm(base_k, dim=-1, keepdim=True).pow(2).clamp_min(1e-8)
        return (dot / norm_k) * base_k

    def euler_vortex(self, state: torch.Tensor) -> torch.Tensor:
        sigma, rho, beta, gamma = 10.0, 28.0, 8.0 / 3.0, 1.0
        feature_dim = state.shape[-1] - 1
        base = state[..., :-1]
        w = state[..., -1:]
        updated_base = torch.zeros_like(base)
        for i in range(0, feature_dim, 3):
            chunk = base[..., i : i + 3]
            if chunk.shape[-1] < 3:
                chunk = F.pad(chunk, (0, 3 - chunk.shape[-1]))
            chunk = chunk.clone()
            for _ in range(self.vortex_steps):
                x = chunk[..., 0]
                y = chunk[..., 1]
                z = chunk[..., 2]
                dx = sigma * (y - x) * self.vortex_dt
                dy = (x * (rho - z) - y) * self.vortex_dt
                dz = (x * y - beta * z) * self.vortex_dt
                chunk = chunk + torch.stack([dx, dy, dz], dim=-1)
            span = min(3, feature_dim - i)
            updated_base[..., i : i + span] = chunk[..., :span]
        energy = torch.norm(base, dim=-1, keepdim=True).pow(2)
        w_iter = w.clone()
        for _ in range(self.vortex_steps):
            dw = (gamma * energy - w_iter) * self.vortex_dt
            w_iter = w_iter + dw
        updated = state.clone()
        updated[..., :-1] = updated_base
        updated[..., -1:] = w_iter
        return updated

    def rotate_difference(self, delta: torch.Tensor, anchor: torch.Tensor) -> torch.Tensor:  # noqa: ARG002
        # Rotation now confined to the (x, y) plane while keeping z (and higher dims) untouched.
        if delta.shape[-1] < 2:
            return delta
        angle = -abs(self.rotation_angle) if self.rotation_clockwise else abs(self.rotation_angle)
        cos_theta = math.cos(angle)
        sin_theta = math.sin(angle)
        rotated = delta.clone()
        x = delta[..., 0]
        y = delta[..., 1]
        rotated[..., 0] = cos_theta * x - sin_theta * y
        rotated[..., 1] = sin_theta * x + cos_theta * y
        if delta.shape[-1] >= 3:
            rotated[..., 2] = delta[..., 2]  # keep z static per vortex requirement
        return rotated

    def _get_quadratic_boundary(self) -> torch.Tensor:
        return self.quadratic_boundary.abs().clamp(0.05, 0.5)

    def quadratic_reflection(self, delta: torch.Tensor) -> Tuple[torch.Tensor, float]:
        """Reflect components between ±boundary and warp them quadratically (Pong-like bounce)."""
        if not self.enable_quadratic_reflection:
            return delta, 0.0
        boundary = self._get_quadratic_boundary()
        period = 2.0 * boundary
        magnitude = delta.abs()
        direction = torch.sign(delta)
        wrapped = torch.remainder(magnitude, period)
        mirrored = torch.where(wrapped > boundary, period - wrapped, wrapped)
        normalized = (mirrored / boundary).clamp(0.0, 1.0)
        squared = normalized.pow(2)
        bounced = direction * boundary * squared
        blended = torch.lerp(delta, bounced, self.quadratic_strength)
        bounce_ratio = (magnitude > boundary).float().mean().item()
        return blended, bounce_ratio

    def forward(self, input_vec: torch.Tensor, chaos_factor: float = 1.0):
        """
        chaos_factor: Multiplicador de agressividade (1.0 = normal, 5.0 = agressivo, 10.0 = insano)
        """
        if input_vec.dim() == 2:
            batch = input_vec.size(0)
            mat_input = input_vec.unsqueeze(1).expand(batch, self.num_streams, self.embed_dim)
        elif input_vec.dim() == 3:
            batch, streams, dim = input_vec.shape
            if streams != self.num_streams or dim != self.embed_dim:
                raise ValueError(
                    f"Esperava tensor (batch,{self.num_streams},{self.embed_dim}), recebi {input_vec.shape}"
                )
            mat_input = input_vec
        else:
            raise ValueError("input_vec precisa ter 2 ou 3 dimensões")

        mat_flat = mat_input.reshape(-1, self.embed_dim)
        mat_primary = self.projector(mat_flat).reshape(-1, self.num_streams, self.embed_dim)
        stage_signatures: Dict[str, str] = {}
        mat_primary = self.ia_router.apply("base", mat_primary)
        stage_signatures["base"] = self.ia_router.stage_signature("base")
        mirrored_primary: Optional[torch.Tensor] = None
        square_tensor: Optional[torch.Tensor] = None
        square_angle_applied: Optional[float] = None
        if self.enforce_square_geometry:
            mirrored_primary, square_angle_applied = self._rotate_matrix_square(mat_primary)
            square_tensor = torch.stack([mat_primary, mirrored_primary], dim=2)
            mat_secondary = mirrored_primary
        else:
            mat_secondary = self.invert(mat_primary)
        mat_secondary = self.ia_router.apply("inversion", mat_secondary)
        stage_signatures["inversion"] = self.ia_router.stage_signature("inversion")
        base_k = mat_primary.mean(dim=1, keepdim=True) + 1e-4 * torch.randn_like(mat_primary[:, :1, :])
        inter_primary = self.intersection_knowledge(mat_primary, base_k)
        inter_secondary = self.intersection_knowledge(mat_secondary, base_k)
        approx_inter_full = 0.5 * (inter_primary + inter_secondary)
        approx_inter = approx_inter_full.mean(dim=1)
        flow_states: Dict[str, object] = {}
        flow_states["matrix_primary"] = mat_primary
        flow_states["matrix_secondary"] = mat_secondary
        flow_states["base_core"] = base_k.squeeze(1)
        if mirrored_primary is not None:
            flow_states["matrix_rot_180"] = mirrored_primary
        if square_tensor is not None:
            flow_states["matrix_square"] = square_tensor
            flow_states["square_leak_ratio"] = self.square_leak_ratio
        if square_angle_applied is not None:
            flow_states["square_angle"] = square_angle_applied

        triangle_debug: Dict[str, object] = {}
        if self.triangle_module is not None:
            delta_green, triangle_debug = self.triangle_module(mat_primary, mat_secondary, base_k)
        else:
            delta_green = inter_primary - base_k
        flow_states["xy_bridge_matrix"] = delta_green
        if triangle_debug:
            flow_states["triangle_axis"] = triangle_debug.get("axis")
            flow_states["triangle_diag"] = triangle_debug.get("diag")
            flow_states["triangle_iterations"] = triangle_debug.get("iterations", 0)
            flow_states["triangle_residual"] = triangle_debug.get("residual", 0.0)

        delta_norm_stream = torch.norm(delta_green, dim=-1, keepdim=True)
        if self.boost_small_deltas:
            boost_mask = delta_norm_stream < self.rotation_threshold
            if boost_mask.any():
                safe_norm = delta_norm_stream.clamp_min(1e-6)
                factor = (self.rotation_threshold / safe_norm) * self.delta_gain
                delta_green = torch.where(boost_mask, delta_green * factor, delta_green)
            boost_ratio = boost_mask.float().mean().item()
        else:
            boost_ratio = 0.0
        flow_states["matrix_green_boost"] = delta_green

        if self.enable_rotation:
            delta_flat = delta_green.reshape(-1, self.embed_dim)
            base_flat = base_k.expand(-1, self.num_streams, -1).reshape(-1, self.embed_dim)
            delta_norm = torch.norm(delta_flat, dim=-1, keepdim=True)
            rotation_mask = delta_norm > self.rotation_threshold
            if rotation_mask.any():
                rotated = self.rotate_difference(delta_flat, base_flat)
                delta_flat = torch.where(rotation_mask, rotated, delta_flat)
            delta_green = delta_flat.view(-1, self.num_streams, self.embed_dim)
            rotation_ratio = rotation_mask.float().mean().item()
        else:
            rotation_ratio = 0.0
        flow_states["matrix_green_rot"] = delta_green

        boundary_val = self._get_quadratic_boundary()
        flow_states["quadratic_boundary"] = boundary_val.detach().item()
        if self.enable_quadratic_reflection and self.reflection_push > 0:
            norm_after_rot = torch.norm(delta_green, dim=-1, keepdim=True)
            push_mask = norm_after_rot < boundary_val
            if push_mask.any():
                push_factor = 1.0 + self.reflection_push
                delta_green = torch.where(push_mask, delta_green * push_factor, delta_green)
            pre_reflect_push_ratio = push_mask.float().mean().item()
        else:
            pre_reflect_push_ratio = 0.0

        if self.enable_quadratic_reflection:
            delta_green, reflection_ratio = self.quadratic_reflection(delta_green)
        else:
            reflection_ratio = 0.0
        flow_states["matrix_green_reflect"] = delta_green

        mirror_reference = self.intersection_knowledge(mat_secondary, base_k)
        matrix_black = 0.5 * (2 * base_k - delta_green + mirror_reference)
        matrix_black = self.ia_router.apply("mirror", matrix_black)
        stage_signatures["mirror"] = self.ia_router.stage_signature("mirror")
        if self.enforce_square_geometry:
            x_stream = mat_primary[:, 0, :]
            x_output = mat_secondary[:, 0, :]
            matrix_black[:, 0, :] = x_output
            flow_states["square_input"] = x_stream
            flow_states["square_output"] = x_output
            flow_states["matrix_black_square"] = matrix_black

        flow_states["matrix_black"] = matrix_black

        delta_inter = matrix_black.mean(dim=1)
        cycle_signatures: List[str] = []
        if self.refinement_cycles > 0:
            refined_delta = delta_inter
            for cycle_idx in range(self.refinement_cycles):
                refined_delta = self.ia_router.apply(
                    self.cycle_stage_name,
                    refined_delta,
                    cycle_idx=cycle_idx,
                )
                cycle_signatures.append(self.ia_router.stage_signature(self.cycle_stage_name))
            delta_inter = refined_delta
        stage_signatures[self.cycle_stage_name] = cycle_signatures[-1] if cycle_signatures else "identity"
        flow_states["delta_pre_lorentz"] = delta_inter
        flow_states["ia_cycle_signatures"] = cycle_signatures

        w = torch.norm(delta_inter, dim=-1, keepdim=True)
        lorentz_gamma = 1.0
        if self.enable_lorentz_transform:
            reference_stream = self._select_axis_stream(mat_primary)
            delta_inter, lorentz_gamma, w = self._lorentz_boost(delta_inter, reference_stream, w)
            flow_states["lorentz_reference"] = reference_stream
            flow_states["delta_lorentz"] = delta_inter
            flow_states["lorentz_gamma"] = lorentz_gamma
            flow_states["lorentz_time"] = w
        
        delta_before_chaos = delta_inter

        # APLICAÇÃO DO FATOR CAOS (OVERDRIVE) - VORTEX DYNAMICS V2
        if chaos_factor != 1.0:
            batch_size = delta_inter.shape[0]
            
            # 1. Generate chaos sequences from both attractors
            lor_seq_np = lorenz_sequence(batch_size, init=(0.1, 0.0, 0.0))
            ros_seq_np = rossler_sequence(batch_size, init=(0.1, 0.0, 0.0))
            
            # Normalize sequences
            lor_seq_np = (lor_seq_np - lor_seq_np.mean(axis=0)) / (lor_seq_np.std(axis=0) + 1e-8)
            ros_seq_np = (ros_seq_np - ros_seq_np.mean(axis=0)) / (ros_seq_np.std(axis=0) + 1e-8)
            
            lor_tensor = torch.tensor(lor_seq_np, dtype=delta_inter.dtype, device=delta_inter.device)
            ros_tensor = torch.tensor(ros_seq_np, dtype=delta_inter.dtype, device=delta_inter.device)
            
            # 2. Adaptive attractor mixing (learnable weights)
            attractor_weights = F.softmax(self.attractor_selector, dim=0)
            mixed_chaos = attractor_weights[0] * lor_tensor + attractor_weights[1] * ros_tensor
            
            # 3. Map 3D Chaos -> Embedding Dimension
            perturb = mixed_chaos @ self.vortex_linear
            perturb = perturb * self.vortex_scale
            
            # 4. Terminal Velocity Matching (Flow-like correction)
            velocity = compute_terminal_velocity(delta_inter, target_distribution="gaussian")
            gated_velocity = velocity * torch.sigmoid(self.velocity_gate) + self.velocity_bias
            
            # 5. Normalize perturbation magnitude
            emb_norm = delta_inter.norm(dim=1, keepdim=True) + 1e-8
            pert_norm = perturb.norm(dim=1, keepdim=True) + 1e-8
            normalized_perturb = perturb * (emb_norm / pert_norm)
            
            # 6. Adaptive temperature scaling + learned gate
            chaos_scale = torch.sigmoid(self.chaos_temperature + self.chaos_gate)
            effective_chaos = chaos_factor * chaos_scale

            # Gate chaos intensity if semantic entropy explodes (uncertain corrections)
            delta_entropy = compute_semantic_entropy(delta_inter.unsqueeze(1))
            chaos_entropy_gate = 1.0 if delta_entropy < 1.0 else 0.5
            effective_chaos = effective_chaos * chaos_entropy_gate
            
            # 7. Apply combined perturbation: chaos + velocity flow
            delta_inter = delta_inter + effective_chaos * normalized_perturb + 0.1 * gated_velocity
            
            # Store chaos metrics
            flow_states["attractor_mix"] = attractor_weights.detach().cpu().tolist()
            flow_states["effective_chaos"] = effective_chaos.item()
            flow_states["chaos_scale"] = chaos_scale.item()
            flow_states["chaos_entropy_gate"] = chaos_entropy_gate
            flow_states["angular_divergence"] = compute_angular_divergence(delta_before_chaos, delta_inter)
            
        # Gain boost to increase boundary hits when chaos is controlled
        delta_inter = delta_inter * 1.5
        flow_states["delta_output"] = delta_inter

        state = torch.cat([approx_inter, delta_inter, w], dim=-1)
        evolved = self.euler_vortex(state)
        flow_states["output_corner"] = evolved[..., :-1]
        flow_states["ia_stage_logs"] = self.ia_router.describe_all_stages()
        self.last_flow_states = flow_states
        overlap = F.cosine_similarity(inter_primary.view(-1, self.embed_dim), inter_secondary.view(-1, self.embed_dim), dim=-1)
        overlap = overlap.view(-1, self.num_streams).mean(dim=1)
        annulation = torch.norm(mat_primary - (-mat_secondary), dim=-1).pow(2).mean(dim=1)
        vortex_sink = evolved[..., -1]
        hall_penalty = (1 - overlap).clamp_min(0.0)
        approx_pull = (
            torch.norm(mat_primary.mean(dim=1) - approx_inter, dim=-1).pow(2)
            + torch.norm(mat_secondary.mean(dim=1) - approx_inter, dim=-1).pow(2)
        )
        
        # SIGReg Regularization (Isotropic Gaussian Enforcement)
        sig_loss = sigreg_loss(delta_inter)
        
        # Spectral Energy Regularization (distribui energia uniformemente)
        spectral_loss = spectral_energy_loss(delta_inter)
        
        delta_probs = F.softmax(delta_inter, dim=-1)
        semantic_entropy = -(delta_probs * (delta_probs + 1e-8).log()).sum(dim=-1).mean()
        semantic_entropy_val = semantic_entropy.item()

        boundary_val = self._get_quadratic_boundary()
        boundary_reg = (0.2 - boundary_val).clamp_min(0.0).pow(2)

        loss = (
            annulation.mean()
            + 0.5 * hall_penalty.mean()
            + 0.25 * approx_pull.mean()
            - 0.1 * vortex_sink.mean()
            + 0.05 * sig_loss
            + 0.02 * spectral_loss  # Força distribuição espectral uniforme
            + 0.02 * boundary_reg
            + 0.05 * semantic_entropy
        )
        metrics = {
            "annulation": annulation.mean().item(),
            "cosine_overlap": overlap.mean().item(),
            "vortex_energy": vortex_sink.mean().item(),
            "sigreg_loss": sig_loss.item(),
            "spectral_loss": spectral_loss.item() if isinstance(spectral_loss, torch.Tensor) else spectral_loss,
            "boundary_reg": boundary_reg.mean().item() if isinstance(boundary_reg, torch.Tensor) else boundary_reg,
            "rotation_ratio": rotation_ratio,
            "approx_alignment": approx_pull.mean().item(),
            "reflection_ratio": reflection_ratio,
            "reflect_ratio": reflection_ratio,
            "boost_ratio": boost_ratio,
            "reflection_push_ratio": pre_reflect_push_ratio,
            "ia_base": stage_signatures.get("base", "identity"),
            "ia_inversion": stage_signatures.get("inversion", "identity"),
            "ia_mirror": stage_signatures.get("mirror", "identity"),
            "ia_cycle": " || ".join(cycle_signatures) if cycle_signatures else stage_signatures.get(self.cycle_stage_name, "identity"),
            "lorentz_gamma": lorentz_gamma,
            "square_angle_deg": math.degrees(square_angle_applied) if square_angle_applied is not None else 0.0,
            "square_leak_ratio": self.square_leak_ratio,
            "angular_divergence": flow_states.get("angular_divergence", 0.0),
            "attractor_mix": flow_states.get("attractor_mix", [1.0, 0.0]),
            "effective_chaos": flow_states.get("effective_chaos", 1.0),
            "semantic_entropy_approx": semantic_entropy_val,
            "triangle_iters": triangle_debug.get("iterations", 0) if triangle_debug else 0,
            "triangle_residual": triangle_debug.get("residual", 0.0) if triangle_debug else 0.0,
        }
        delta_norm = torch.norm(delta_inter, dim=-1)
        metrics["delta_norm_mean"] = delta_norm.mean().item()
        metrics["delta_norm_max"] = delta_norm.max().item()
        return evolved, loss, metrics, delta_inter


class PortugueseSentenceDataset(Dataset):
    def __init__(
        self,
        sentences: List[str],
        tokenizer: AutoTokenizer,
        embedding_model: SentenceTransformer,
        mask_prob: float = 0.15,
        max_seq_length: int = 512,
        precompute_embeddings: bool = False,
        embedding_batch_size: int = 64,
    ):
        self.sentences = sentences
        self.tokenizer = tokenizer
        self.embedding_model = embedding_model
        self.mask_prob = mask_prob
        self.max_seq_length = max_seq_length
        self.precompute_embeddings = precompute_embeddings
        self.embedding_batch_size = max(1, embedding_batch_size)
        self.embeddings: Optional[torch.Tensor] = None
        self._embedding_cache: Dict[int, torch.Tensor] = {}
        if self.precompute_embeddings:
            self._precompute_all_embeddings()

    def __len__(self) -> int:
        return len(self.sentences)

    def _mask_tokens(self, input_ids: torch.Tensor, special_mask: torch.Tensor) -> Dict[str, torch.Tensor]:
        labels = input_ids.clone()
        probability_matrix = torch.full(labels.shape, self.mask_prob)
        probability_matrix.masked_fill_(special_mask.bool(), 0.0)
        masked_indices = torch.bernoulli(probability_matrix).bool()
        if not masked_indices.any():
            candidate_positions = (~special_mask.bool()).nonzero(as_tuple=False).view(-1)
            choice = candidate_positions[torch.randint(0, candidate_positions.numel(), (1,)).item()]
            masked_indices[choice] = True
        labels[~masked_indices] = -100
        input_ids = input_ids.clone()
        input_ids[masked_indices] = self.tokenizer.mask_token_id
        return {"input_ids": input_ids, "labels": labels}

    def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
        sentence = self.sentences[idx]
        encoding = self.tokenizer(
            sentence,
            return_tensors="pt",
            return_special_tokens_mask=True,
            truncation=True,
            max_length=self.max_seq_length,
        )
        input_ids = encoding["input_ids"].squeeze(0)
        attention_mask = encoding["attention_mask"].squeeze(0)
        special_mask = encoding["special_tokens_mask"].squeeze(0)
        masked = self._mask_tokens(input_ids, special_mask)
        embedding = self._get_embedding(idx)
        return {
            "input_ids": masked["input_ids"],
            "attention_mask": attention_mask,
            "labels": masked["labels"],
            "embedding": embedding,
        }

    @torch.no_grad()
    def _precompute_all_embeddings(self) -> None:
        chunks: List[torch.Tensor] = []
        total = len(self.sentences)
        for start in range(0, total, self.embedding_batch_size):
            batch = self.sentences[start : start + self.embedding_batch_size]
            batch_embeds = self.embedding_model.encode(
                batch,
                convert_to_tensor=True,
                show_progress_bar=False,
                batch_size=self.embedding_batch_size,
            )
            chunks.append(batch_embeds.float().cpu())
        self.embeddings = torch.cat(chunks, dim=0) if chunks else torch.empty(0)

    @torch.no_grad()
    def _compute_single_embedding(self, sentence: str) -> torch.Tensor:
        embed = self.embedding_model.encode(
            sentence,
            convert_to_tensor=True,
            show_progress_bar=False,
            batch_size=1,
        )
        return embed.float().cpu()

    def _get_embedding(self, idx: int) -> torch.Tensor:
        if self.embeddings is not None:
            return self.embeddings[idx]
        if idx not in self._embedding_cache:
            self._embedding_cache[idx] = self._compute_single_embedding(self.sentences[idx])
        return self._embedding_cache[idx]


def build_collate_fn(tokenizer: AutoTokenizer):
    pad_id = tokenizer.pad_token_id

    def collate(batch: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
        input_ids = pad_sequence([item["input_ids"] for item in batch], batch_first=True, padding_value=pad_id)
        attention_mask = pad_sequence([item["attention_mask"] for item in batch], batch_first=True, padding_value=0)
        labels = pad_sequence([item["labels"] for item in batch], batch_first=True, padding_value=-100)
        embeddings = torch.stack([item["embedding"] for item in batch])
        return {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "labels": labels,
            "embedding": embeddings,
        }

    return collate


class BetinaTrainer:
    def __init__(
        self,
        vortex: VortexBetinaAntiHalluc,
        tokenizer: AutoTokenizer,
        embedding_model: SentenceTransformer,
        mlm_model: AutoModelForMaskedLM,
        raw_embedding_dim: int,
        embed_dim: int,
        lambda_vortex: float = 0.5,
        learning_rate: float = 1e-4,
        mlm_learning_rate: float = 5e-5,
        freeze_mlm: bool = False,
        freeze_projectors: bool = False,
        correction_max_norm: float | None = None,
        chaos_factor: float = 1.0,
        eval_chaos_factor: float = 1.0,
        device: torch.device | None = None,
        max_seq_length: int = 512,
    ):
        self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.vortex = vortex.to(self.device)
        self.tokenizer = tokenizer
        self.embedding_model = embedding_model
        self.mlm_model = mlm_model.to(self.device)
        self.lambda_vortex = lambda_vortex
        self.chaos_factor = chaos_factor
        self.eval_chaos_factor = eval_chaos_factor
        self.embedding_projector = nn.Linear(raw_embedding_dim, embed_dim).to(self.device)
        hidden_size = self.mlm_model.config.hidden_size
        self.correction_projector = nn.Linear(embed_dim, hidden_size).to(self.device)
        self.freeze_projectors = freeze_projectors
        self.correction_max_norm = correction_max_norm if correction_max_norm and correction_max_norm > 0 else None
        self.max_seq_length = max_seq_length
        mlm_params = list(self.mlm_model.parameters())
        if freeze_mlm:
            for param in mlm_params:
                param.requires_grad = False
        projector_params = list(self.embedding_projector.parameters()) + list(self.correction_projector.parameters())
        if freeze_projectors:
            for param in projector_params:
                param.requires_grad = False
        trainable_projectors = [] if freeze_projectors else projector_params
        vortex_params = list(self.vortex.parameters()) + trainable_projectors
        optimizer_groups = [
            {"params": vortex_params, "lr": learning_rate},
        ]
        if not freeze_mlm:
            optimizer_groups.append({"params": mlm_params, "lr": mlm_learning_rate})
        self.optimizer = optim.AdamW(optimizer_groups)
        self.freeze_mlm = freeze_mlm
        self.scaler = betina_grad_scaler(self.device.type, enabled=self.device.type == "cuda")

    def _project_correction(self, delta: torch.Tensor) -> torch.Tensor:
        correction = self.correction_projector(delta)
        if self.correction_max_norm is not None:
            dim = correction.dim() - 1 if correction.dim() > 0 else 0
            correction = correction.renorm(p=2, dim=dim, maxnorm=self.correction_max_norm)
        return correction

    def train(self, dataloader: DataLoader, epochs: int = 5, grad_clip: float = 1.0) -> List[Dict[str, float]]:
        history: List[Dict[str, float]] = []
        self.vortex.train()
        self.mlm_model.train()
        for epoch in range(epochs):
            for step, batch in enumerate(dataloader):
                input_ids = batch["input_ids"].to(self.device)
                attention_mask = batch["attention_mask"].to(self.device)
                labels = batch["labels"].to(self.device)
                embeds = batch["embedding"].to(self.device)
                self.optimizer.zero_grad(set_to_none=True)
                with betina_autocast(self.device.type, enabled=self.device.type == "cuda"):
                    projected = self.embedding_projector(embeds)
                    _, vortex_loss, metrics, delta = self.vortex(projected, chaos_factor=self.chaos_factor)
                    if self.freeze_mlm:
                        with torch.no_grad():
                            outputs = self.mlm_model(
                                input_ids=input_ids,
                                attention_mask=attention_mask,
                                output_hidden_states=True,
                                return_dict=True,
                            )
                    else:
                        outputs = self.mlm_model(
                            input_ids=input_ids,
                            attention_mask=attention_mask,
                            output_hidden_states=True,
                            return_dict=True,
                        )
                    hidden = outputs.hidden_states[-1]
                    correction = self._project_correction(delta).unsqueeze(1)
                    attention_mask_f = attention_mask.unsqueeze(-1).float()
                    mask_focus = (input_ids == self.tokenizer.mask_token_id).unsqueeze(-1).float()
                    weight_mask = 0.5 * attention_mask_f + 0.5 * mask_focus
                    corrected_hidden = hidden + correction * weight_mask
                    if hasattr(self.mlm_model, "cls"):
                        logits = self.mlm_model.cls(corrected_hidden)
                    else:
                        logits = self.mlm_model.get_output_embeddings()(corrected_hidden)
                    mask_positions = labels != -100
                    if mask_positions.any():
                        mlm_loss = F.cross_entropy(logits[mask_positions], labels[mask_positions])
                    else:
                        mlm_loss = torch.zeros(1, device=self.device)
                    total_loss = mlm_loss + self.lambda_vortex * vortex_loss
                self.scaler.scale(total_loss).backward()
                torch.nn.utils.clip_grad_norm_(self.parameters(), grad_clip)
                self.scaler.step(self.optimizer)
                self.scaler.update()
                perplexity = torch.exp(mlm_loss.detach())
                record = {
                    "epoch": epoch + 1,
                    "step": step + 1,
                    "mlm_loss": mlm_loss.detach().item(),
                    "vortex_loss": vortex_loss.detach().item(),
                    "total_loss": total_loss.detach().item(),
                    "perplexity": perplexity.item(),
                    "vortex_energy": metrics["vortex_energy"],
                    "cosine_overlap": metrics["cosine_overlap"],
                    "rotation_ratio": metrics["rotation_ratio"],
                    "approx_alignment": metrics["approx_alignment"],
                    "reflection_ratio": metrics["reflection_ratio"],
                    "boost_ratio": metrics.get("boost_ratio", 0.0),
                    "reflection_push_ratio": metrics.get("reflection_push_ratio", 0.0),
                }
                history.append(record)
                if step % 10 == 0:
                    print(
                        f"Epoch {record['epoch']:03d} Step {record['step']:04d} | "
                        f"Total {record['total_loss']:.4f} | MLM {record['mlm_loss']:.4f} | "
                        f"PPL {record['perplexity']:.4f} | "
                        f"Vortex {record['vortex_loss']:.4f} | Overlap {record['cosine_overlap']:.4f} | "
                        f"Energy {record['vortex_energy']:.4f} | Rotation {record['rotation_ratio']:.3f} | "
                        f"Reflect {record['reflection_ratio']:.3f} | Boost {record['boost_ratio']:.3f} | "
                        f"PreReflect {record['reflection_push_ratio']:.3f} | Approx {record['approx_alignment']:.4f}"
                    )
        return history

    def parameters(self):
        for module in (self.vortex, self.embedding_projector, self.correction_projector, self.mlm_model):
            for param in module.parameters():
                if param.requires_grad:
                    yield param

    @torch.no_grad()
    def evaluate_perplexity(self, dataloader: DataLoader, apply_correction: bool = True) -> float:
        self.vortex.eval()
        self.mlm_model.eval()
        total_loss = 0.0
        total_tokens = 0
        for batch in dataloader:
            input_ids = batch["input_ids"].to(self.device)
            attention_mask = batch["attention_mask"].to(self.device)
            labels = batch["labels"].to(self.device)
            embeds = batch["embedding"].to(self.device)
            outputs = self.mlm_model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_hidden_states=True,
                return_dict=True,
            )
            hidden = outputs.hidden_states[-1]
            if apply_correction:
                projected = self.embedding_projector(embeds)
                _, _, _, delta = self.vortex(projected, chaos_factor=self.eval_chaos_factor)
                correction = self._project_correction(delta).unsqueeze(1)
                attention_mask_f = attention_mask.unsqueeze(-1).float()
                mask_focus = (input_ids == self.tokenizer.mask_token_id).unsqueeze(-1).float()
                weight_mask = 0.5 * attention_mask_f + 0.5 * mask_focus
                hidden = hidden + correction * weight_mask
            if hasattr(self.mlm_model, "cls"):
                logits = self.mlm_model.cls(hidden)
            else:
                logits = self.mlm_model.get_output_embeddings()(hidden)
            mask_positions = labels != -100
            if mask_positions.any():
                loss = F.cross_entropy(logits[mask_positions], labels[mask_positions], reduction="sum")
                total_loss += loss.item()
                total_tokens += mask_positions.sum().item()
        if total_tokens == 0:
            return float("inf")
        return math.exp(total_loss / total_tokens)

    @torch.no_grad()
    def save(self, output_dir: str) -> None:
        output_path = Path(output_dir)
        output_path.mkdir(parents=True, exist_ok=True)
        torch.save(self.vortex.state_dict(), output_path / "vortex.pt")
        torch.save(self.embedding_projector.state_dict(), output_path / "embedding_projector.pt")
        torch.save(self.correction_projector.state_dict(), output_path / "correction_projector.pt")
        self.mlm_model.save_pretrained(output_path / "mlm")
        self.tokenizer.save_pretrained(output_path / "mlm")

    @torch.no_grad()
    def fill_masks(
        self,
        texts: List[str],
        top_k: int = 5,
        apply_correction: bool = True,
    ) -> List[List[List[Tuple[str, float]]]]:
        self.vortex.eval()
        self.mlm_model.eval()
        encodings = self.tokenizer(
            texts,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=self.max_seq_length,
        )
        input_ids = encodings["input_ids"].to(self.device)
        attention_mask = encodings["attention_mask"].to(self.device)
        outputs = self.mlm_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict=True,
        )
        hidden = outputs.hidden_states[-1]
        if apply_correction:
            embeds = self.embedding_model.encode(texts, convert_to_tensor=True, show_progress_bar=False).to(self.device)
            projected = self.embedding_projector(embeds)
            _, _, _, delta = self.vortex(projected, chaos_factor=self.eval_chaos_factor)
            correction = self._project_correction(delta).unsqueeze(1)
            attention_mask_f = attention_mask.unsqueeze(-1).float()
            mask_focus = (input_ids == self.tokenizer.mask_token_id).unsqueeze(-1).float()
            weight_mask = 0.5 * attention_mask_f + 0.5 * mask_focus
            hidden = hidden + correction * weight_mask
        if hasattr(self.mlm_model, "cls"):
            logits = self.mlm_model.cls(hidden)
        else:
            logits = self.mlm_model.get_output_embeddings()(hidden)
        mask_positions = (input_ids == self.tokenizer.mask_token_id)
        results: List[List[List[Tuple[str, float]]]] = []
        for batch_index in range(input_ids.size(0)):
            batch_tokens: List[List[Tuple[str, float]]] = []
            positions = mask_positions[batch_index].nonzero(as_tuple=False).view(-1)
            for position in positions:
                token_logits = logits[batch_index, position]
                token_probs = F.softmax(token_logits, dim=-1)
                topk = torch.topk(token_probs, top_k)
                decoded: List[Tuple[str, float]] = []
                for token_id, prob in zip(topk.indices, topk.values):
                    token = self.tokenizer.decode([token_id]).strip()
                    decoded.append((token, prob.item()))
                batch_tokens.append(decoded)
            results.append(batch_tokens)
        return results


def run_demo(embed_dim: int = 4, batch_size: int = 3, seed: int = 123) -> None:
    torch.manual_seed(seed)
    model = VortexBetinaAntiHalluc(embed_dim=embed_dim)
    inputs = torch.randn(batch_size, embed_dim)
    evolved, loss, metrics, delta = model(inputs)
    print("Dimensão de entrada:", embed_dim)
    print("Inputs:", inputs)
    print("Estado evoluído shape:", evolved.shape)
    print("Delta shape:", delta.shape)
    print("Loss:", loss.item())
    for key, value in metrics.items():
        print(f"{key}: {value}")


def sample_sentences() -> List[str]:
    return [
        "O céu de Lisboa estava completamente claro naquela manhã.",
        "A inteligência coletiva da equipe resolveu o problema rapidamente.",
        "O gato preto dormia tranquilo sobre o sofá da sala.",
        "A orquestra executou a sinfonia com uma precisão impressionante.",
        "Os dados indicam uma redução consistente nas alucinações do modelo.",
        "A pesquisa científica requer paciência, rigor e curiosidade constante.",
        "A ponte antiga foi restaurada para preservar o patrimônio cultural.",
        "O sistema Betina ajusta embeddings para evitar distorções semânticas.",
    ]


def load_sentences_from_args(args: argparse.Namespace) -> List[str]:
    if args.dataset_file:
        path = Path(args.dataset_file)
        if not path.exists():
            raise FileNotFoundError(f"Dataset file not found: {path}")
        sentences = [line.strip() for line in path.read_text(encoding="utf-8").splitlines() if line.strip()]
        if not sentences:
            raise ValueError(f"Dataset file {path} is empty")
        return sentences if args.dataset_limit is None else sentences[: args.dataset_limit]
    if args.dataset_hf:
        if load_dataset is None:
            raise ImportError("Install the 'datasets' package to use --dataset-hf option")
        split = args.dataset_split
        if args.dataset_limit and ":" not in split:
            split = f"{split}[:{args.dataset_limit}]"
        dataset_name = args.dataset_hf
        config_name: Optional[str] = args.dataset_hf_config or None
        try:
            dataset = _safe_load_dataset(
                dataset_name,
                config_name,
                split=split,
                hf_token=args.hf_token,
                trust_remote_code=args.trust_remote_code,
            )
        except Exception as exc:
            message = str(exc).lower()
            scripts_blocked = "dataset scripts are no longer supported" in message
            trust_flag_blocked = "trust_remote_code" in message
            if dataset_name == "wikipedia" and (scripts_blocked or trust_flag_blocked):
                fallback_name = "wikimedia/wikipedia"
                fallback_config = config_name or "20231101.pt"
                print(
                    "Dataset 'wikipedia' agora usa snapshot parquet e não aceita mais scripts remotos."
                    f" Alternando automaticamente para {fallback_name} ({fallback_config})."
                )
                dataset = _safe_load_dataset(
                    fallback_name,
                    fallback_config,
                    split=split,
                    hf_token=args.hf_token,
                    trust_remote_code=False,
                )
            elif scripts_blocked and not args.trust_remote_code:
                hint = (
                    "O dataset solicita código remoto. Reexecute com --trust-remote-code para habilitar"
                    " scripts do autor do dataset. Apenas use se confiar na fonte."
                )
                raise RuntimeError(hint) from exc
            if "gated dataset" in message or "403" in message or "401" in message:
                hint = (
                    "Dataset protegido requer autenticação. Informe --hf-token <TOKEN>, defina HF_TOKEN/HUGGINGFACE_TOKEN"
                    " ou utilize --hf-token-file apontando para o token salvo pelo huggingface-cli. Também é possível"
                    " executar 'huggingface-cli login' para gerar ~/.cache/huggingface/token.\nVocê pode obter o token em"
                    " https://huggingface.co/settings/tokens."
                )
                raise RuntimeError(hint) from exc
            raise
        sentences: List[str] = []
        text_field = args.dataset_text_field
        limit = args.dataset_limit
        for item in dataset:
            text = item.get(text_field)
            if isinstance(text, str) and text.strip():
                sentences.append(text.strip())
            if limit is not None and len(sentences) >= limit:
                break
        if not sentences:
            raise ValueError("No sentences extracted from the specified dataset")
        return sentences
    return sample_sentences()


def print_gain_summary(
    prompts: List[str],
    base_fills: List[List[List[Tuple[str, float]]]],
    betina_fills: List[List[List[Tuple[str, float]]]],
) -> None:
    print("\nResumo de ganhos top-1:")
    for prompt, base_masks, betina_masks in zip(prompts, base_fills, betina_fills):
        prompt_head = prompt if len(prompt) <= 60 else f"{prompt[:57]}..."
        for idx, (base_group, betina_group) in enumerate(zip(base_masks, betina_masks), start=1):
            if not base_group or not betina_group:
                continue
            base_token, base_prob = base_group[0]
            betina_token, betina_prob = betina_group[0]
            delta = betina_prob - base_prob
            if base_prob > 0:
                rel = delta / base_prob * 100.0
                rel_text = f"{rel:+.2f}%"
            else:
                rel_text = "n/d"
            change_desc = "mantido" if betina_token == base_token else f"{base_token} -> {betina_token}"
            print(
                f"  [{prompt_head}] máscara {idx}: {change_desc} | base {base_prob:.4f} -> betina {betina_prob:.4f} ({rel_text})"
            )


def _prepare_debug_value(value, max_examples: int):
    if isinstance(value, torch.Tensor):
        limited = value.detach().cpu()
        if limited.dim() >= 1:
            limited = limited[:max_examples]
        return limited.tolist()
    if isinstance(value, dict):
        return {key: _prepare_debug_value(val, max_examples) for key, val in value.items()}
    if isinstance(value, (list, tuple)):
        return [_prepare_debug_value(item, max_examples) for item in value]
    if isinstance(value, (float, int, str)) or value is None:
        return value
    return str(value)


def dump_square_debug(flow_states: Dict[str, object], metrics: Dict[str, float], output_path: str, max_examples: int = 1) -> Path:
    output = Path(output_path).expanduser()
    payload = {
        "max_examples": max(1, max_examples),
        "metrics": {key: float(value) if isinstance(value, (int, float)) else value for key, value in metrics.items()},
        "flow_states": {key: _prepare_debug_value(val, max_examples) for key, val in flow_states.items()},
    }
    output.parent.mkdir(parents=True, exist_ok=True)
    output.write_text(json.dumps(payload, indent=2), encoding="utf-8")
    return output


def main(argv: list[str] | None = None):
    parser = argparse.ArgumentParser(description="Treinamento do modelo Betina anti-hallucination")
    parser.add_argument("--train", action="store_true", help="Executa treinamento completo")
    parser.add_argument("--epochs", type=int, default=5, help="Número de épocas para treinar")
    parser.add_argument("--batch-size", type=int, default=4, help="Tamanho do batch")
    parser.add_argument("--embed-dim", type=int, default=256, choices=[128, 256], help="Dimensão interna do vórtice")
    parser.add_argument("--lambda-vortex", type=float, default=0.1, help="Peso da loss do vórtice")
    parser.add_argument("--chaos-factor", type=float, default=1.0, help="Fator de caos aplicado durante o treinamento")
    parser.add_argument(
        "--eval-chaos-factor",
        type=float,
        default=1.0,
        help="Fator de caos usado em avaliação e inferência (permite medir diferentes regimes)",
    )
    parser.add_argument("--learning-rate", type=float, default=1e-4, help="Learning rate para o vórtice e projetores")
    parser.add_argument("--mlm-learning-rate", type=float, default=5e-5, help="Learning rate para o modelo de linguagem")
    parser.add_argument("--freeze-mlm", action="store_true", help="Congela os pesos do modelo de linguagem durante o treino")
    parser.add_argument("--freeze-projectors", action="store_true", help="Congela os projetores de embedding/correção (modo inferência)")
    parser.add_argument(
        "--correction-max-norm",
        type=float,
        default=None,
        help="Clampa o vetor de correção Betina a esta norma L2 (<=0 desativa)",
    )
    parser.add_argument("--output-dir", type=str, default="outputs/betina_vortex", help="Diretório para salvar o modelo")
    parser.add_argument("--device", type=str, default=None, help="Força execução em cuda ou cpu")
    parser.add_argument("--top-k", type=int, default=5, help="Top-k para avaliação de máscara")
    parser.add_argument("--skip-eval", action="store_true", help="Pula avaliação pós-treino")
    parser.add_argument("--eval-prompts", nargs="*", default=None, help="Prompts personalizados contendo [MASK] para avaliação")
    parser.add_argument("--dataset-file", type=str, default=None, help="Arquivo de texto com uma sentença por linha")
    parser.add_argument("--dataset-hf", type=str, default=None, help="Nome do dataset Hugging Face, ex.: oscar")
    parser.add_argument("--dataset-hf-config", type=str, default=None, help="Config do dataset Hugging Face, ex.: unshuffled_deduplicated_pt")
    parser.add_argument("--dataset-split", type=str, default="train[:1000]", help="Split do dataset Hugging Face")
    parser.add_argument("--dataset-text-field", type=str, default="text", help="Campo de texto no dataset Hugging Face")
    parser.add_argument("--dataset-limit", type=int, default=None, help="Limite de sentenças carregadas")
    parser.add_argument("--hf-token", type=str, default=None, help="Token de autenticação da Hugging Face (ou defina HF_TOKEN)")
    parser.add_argument(
        "--hf-token-file",
        type=str,
        default=None,
        help="Arquivo contendo o token da Hugging Face (padrão: ~/.cache/huggingface/token)",
    )
    parser.add_argument("--trust-remote-code", action="store_true", help="Permite datasets com script remoto (requer confiança no autor)")
    parser.add_argument("--force-download", action="store_true", help="Força novo download dos pesos do modelo de linguagem")
    parser.add_argument("--disable-rotation", action="store_true", help="Desativa a rotação do delta do vórtice")
    parser.add_argument("--rotation-angle", type=float, default=math.pi / 4, help="Ângulo (rad) para rotacionar o delta quando ativado")
    parser.add_argument("--rotation-threshold", type=float, default=1e-4, help="Norma mínima do delta para aplicar rotação")
    parser.add_argument("--rotation-clockwise", action="store_true", help="Força rotação horária (inverte o sinal do ângulo)")
    parser.add_argument(
        "--enable-quadratic-reflection",
        action="store_true",
        help="Ativa reflexão quadrática estilo bolinha/bastão no delta do vórtice",
    )
    parser.add_argument(
        "--quadratic-boundary",
        type=float,
        default=1.0,
        help="Magnitudes acima desse valor são refletidas (parede virtual)",
    )
    parser.add_argument(
        "--quadratic-strength",
        type=float,
        default=0.5,
        help="Mistura (0-1) entre o delta original e o refletido quadrático",
    )
    parser.add_argument(
        "--disable-triangle",
        action="store_true",
        help="Desativa o neurônio sintético triangular que confronta X, Y e contrabase",
    )
    parser.add_argument(
        "--triangle-hidden-dim",
        type=int,
        default=512,
        help="Dimensão oculta usada dentro do neurônio triangular",
    )
    parser.add_argument(
        "--triangle-max-iters",
        type=int,
        default=5,
        help="Iterações máximas de refinamento (porquês) do triângulo",
    )
    parser.add_argument(
        "--triangle-tol",
        type=float,
        default=1e-4,
        help="Tolerância para encerrar refinamento triangular (quanto menor, mais perguntas)",
    )
    parser.add_argument(
        "--triangle-delta-gain",
        type=float,
        default=1.0,
        help="Ganho aplicado ao eixo integrador do triângulo",
    )
    parser.add_argument(
        "--disable-square-geometry",
        action="store_true",
        help="Desativa o giro de 180° que forma o quadrado X↔X⁻¹",
    )
    parser.add_argument(
        "--square-rotation-degrees",
        type=float,
        default=180.0,
        help="Ângulo aplicado ao girar a matriz completa (180° gera o quadrado perfeito)",
    )
    parser.add_argument(
        "--square-leak-ratio",
        type=float,
        default=0.05,
        help="Mistura o quadrado com a matriz original (0 mantém oposição perfeita, 1 ignora o giro)",
    )
    parser.add_argument(
        "--square-jitter-std-deg",
        type=float,
        default=0.0,
        help="Desvio padrão em graus para injetar ruído aleatório no giro quadrado",
    )
    parser.add_argument(
        "--square-debug-json",
        type=str,
        default=None,
        help="Se definido, salva um dump JSON com as matrizes primária/secundária e métricas do vórtice",
    )
    parser.add_argument(
        "--square-debug-max",
        type=int,
        default=1,
        help="Número máximo de exemplos incluídos no dump quadrado",
    )
    parser.add_argument(
        "--enable-lorentz-transform",
        action="store_true",
        help="Aplica transformação de Lorentz no delta final para medir o resultado físico",
    )
    parser.add_argument(
        "--lorentz-beta",
        type=float,
        default=0.6,
        help="Fração da velocidade da luz usada no boost de Lorentz",
    )
    parser.add_argument(
        "--lorentz-axis-stream",
        type=int,
        default=0,
        help="Stream usado como eixo espacial (0=X, 1=Y, etc.) na transformação de Lorentz",
    )
    parser.add_argument(
        "--ia-config",
        type=str,
        default=None,
        help="Arquivo JSON descrevendo quais IAs assumem cada estágio/stream do fluxo matriz",
    )
    parser.add_argument(
        "--refinement-cycles",
        type=int,
        default=0,
        help="Quantidade de ciclos circundantes de refinamento IA aplicados ao delta final",
    )
    parser.add_argument(
        "--cycle-stage-name",
        type=str,
        default="cycle",
        help="Nome do estágio IA usado durante cada ciclo circundante",
    )
    parser.add_argument("--max-seq-length", type=int, default=512, help="Comprimento máximo de tokens por exemplo (padrão BERT)")
    parser.add_argument("--precompute-embeddings", action="store_true", help="Codifica todas as sentenças antes do treino (requer muita RAM)")
    parser.add_argument("--embedding-batch-size", type=int, default=64, help="Batch interno para geração de embeddings (encode)")
    if argv is None:
        argv_list = sys.argv[1:]
        if "ipykernel" in sys.modules:
            filtered: List[str] = []
            skip_next = False
            for item in argv_list:
                if skip_next:
                    skip_next = False
                    continue
                if item == "-f":
                    skip_next = True
                    continue
                if item.startswith("-f="):
                    continue
                filtered.append(item)
            argv_list = filtered
    else:
        argv_list = list(argv)

    parsed, unknown = parser.parse_known_args(argv_list)
    if unknown:
        print(f"Ignorando argumentos desconhecidos: {unknown}")
    args = parsed

    args.hf_token, token_source = resolve_hf_token(args.hf_token, args.hf_token_file)
    if args.hf_token and token_source:
        print(f"Token Hugging Face detectado via {token_source}.")

    device = torch.device(args.device) if args.device else torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Usando dispositivo: {device}")

    embedding_model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
    tokenizer_name = "neuralmind/bert-base-portuguese-cased"

    embedding_model = SentenceTransformer(embedding_model_name, device=str(device) if device.type == "cuda" else "cpu")
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token or tokenizer.sep_token or tokenizer.cls_token
    try:
        mlm_model = AutoModelForMaskedLM.from_pretrained(tokenizer_name, force_download=args.force_download)
    except Exception as exc:
        print(f"Download failed: {exc}. Try checking internet or cache.")
        raise

    sentences = load_sentences_from_args(args)
    dataset = PortugueseSentenceDataset(
        sentences,
        tokenizer,
        embedding_model,
        max_seq_length=args.max_seq_length,
        precompute_embeddings=args.precompute_embeddings,
        embedding_batch_size=args.embedding_batch_size,
    )
    collate_fn = build_collate_fn(tokenizer)
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn)
    eval_dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn)

    stream_aliases: Optional[List[str]] = None
    ia_stage_config: Optional[Dict[str, Dict[str, nn.Module]]] = None
    refinement_cycles = args.refinement_cycles
    config_cycle_stage = args.cycle_stage_name
    if args.ia_config:
        ia_config_data = load_ia_config_file(args.ia_config, args.embed_dim)
        print(f"Config IA carregada de {args.ia_config}")
        stream_aliases = ia_config_data.get("stream_aliases")
        ia_stage_config = ia_config_data.get("stage_config")  # type: ignore[assignment]
        config_cycles = ia_config_data.get("refinement_cycles")
        if isinstance(config_cycles, int):
            refinement_cycles = config_cycles
        config_cycle_stage = str(ia_config_data.get("cycle_stage_name", config_cycle_stage))

    vortex = VortexBetinaAntiHalluc(
        embed_dim=args.embed_dim,
        enable_rotation=not args.disable_rotation,
        rotation_angle=args.rotation_angle,
        rotation_threshold=args.rotation_threshold,
        rotation_clockwise=args.rotation_clockwise,
        enable_quadratic_reflection=args.enable_quadratic_reflection,
        quadratic_boundary=args.quadratic_boundary,
        quadratic_strength=args.quadratic_strength,
        stream_aliases=stream_aliases,
        ia_stage_config=ia_stage_config,
        refinement_cycles=refinement_cycles,
        cycle_stage_name=config_cycle_stage,
        enforce_square_geometry=not args.disable_square_geometry,
        square_rotation_degrees=args.square_rotation_degrees,
        square_leak_ratio=args.square_leak_ratio,
        square_jitter_std_degrees=args.square_jitter_std_deg,
        enable_lorentz_transform=args.enable_lorentz_transform,
        lorentz_beta=args.lorentz_beta,
        lorentz_axis_stream=args.lorentz_axis_stream,
        enable_triangle=not args.disable_triangle,
        triangle_hidden_dim=args.triangle_hidden_dim,
        triangle_max_iters=args.triangle_max_iters,
        triangle_tol=args.triangle_tol,
        triangle_delta_gain=args.triangle_delta_gain,
    )
    trainer = BetinaTrainer(
        vortex=vortex,
        tokenizer=tokenizer,
        embedding_model=embedding_model,
        mlm_model=mlm_model,
        raw_embedding_dim=embedding_model.get_sentence_embedding_dimension(),
        embed_dim=args.embed_dim,
        lambda_vortex=args.lambda_vortex,
        learning_rate=args.learning_rate,
        mlm_learning_rate=args.mlm_learning_rate,
        freeze_mlm=args.freeze_mlm,
        freeze_projectors=args.freeze_projectors,
        correction_max_norm=args.correction_max_norm,
        eval_chaos_factor=args.eval_chaos_factor,
        chaos_factor=args.chaos_factor,
        device=device,
        max_seq_length=args.max_seq_length,
    )

    if args.square_debug_json:
        square_max = max(1, args.square_debug_max)
        try:
            sample_batch = next(iter(dataloader))
        except StopIteration as exc:  # pragma: no cover - dataset vazio
            raise RuntimeError("Não é possível gerar dump quadrado: dataset vazio") from exc
        sample_embeddings = sample_batch["embedding"][:square_max].to(device)
        with torch.no_grad():
            projected = trainer.embedding_projector(sample_embeddings)
            _, _, metrics_debug, _ = trainer.vortex(projected, chaos_factor=trainer.eval_chaos_factor)
        dump_square_debug(
            trainer.vortex.last_flow_states,
            metrics_debug,
            args.square_debug_json,
            max_examples=min(square_max, sample_embeddings.size(0)),
        )
        print(f"Dump quadrado salvo em {args.square_debug_json}")

    if args.train:
        print("Iniciando treinamento...")
        history = trainer.train(dataloader, epochs=args.epochs)
        print(f"Treinamento finalizado com {len(history)} passos")
        trainer.save(args.output_dir)
        print(f"Modelos salvos em {args.output_dir}")

    if not args.skip_eval:
        ppl_base = trainer.evaluate_perplexity(eval_dataloader, apply_correction=False)
        ppl_betina = trainer.evaluate_perplexity(eval_dataloader, apply_correction=True)
        print(f"\nPerplexity sem correção: {ppl_base:.4f}")
        print(f"Perplexity com correção Betina: {ppl_betina:.4f}")
        ppl_delta = ppl_base - ppl_betina
        if ppl_base > 0:
            ppl_rel = ppl_delta / ppl_base * 100.0
            print(f"Ganho absoluto: {ppl_delta:+.4f} | Ganho relativo: {ppl_rel:+.2f}%")
        else:
            print(f"Ganho absoluto: {ppl_delta:+.4f} | Ganho relativo: n/d")

        eval_prompts = args.eval_prompts or [
            "O modelo Betina evita [MASK] durante a geração.",
            "A capital de Portugal é [MASK].",
            "A IA Betina corrige [MASK] via vórtice.",
            "O vórtice no Betina filtra [MASK] para reduzir alucinações.",
        ]
        print("\nPreenchimento sem correção:")
        base_fills = trainer.fill_masks(eval_prompts, top_k=args.top_k, apply_correction=False)
        for prompt, tokens in zip(eval_prompts, base_fills):
            print(prompt)
            for idx, group in enumerate(tokens, start=1):
                formatted = [f"{token} ({prob:.4f})" for token, prob in group]
                print(f"  Mascara {idx}: {formatted}")
        print("\nPreenchimento com correção Betina:")
        betina_fills = trainer.fill_masks(eval_prompts, top_k=args.top_k, apply_correction=True)
        for prompt, tokens in zip(eval_prompts, betina_fills):
            print(prompt)
            for idx, group in enumerate(tokens, start=1):
                formatted = [f"{token} ({prob:.4f})" for token, prob in group]
                print(f"  Mascara {idx}: {formatted}")

        print_gain_summary(eval_prompts, base_fills, betina_fills)


if __name__ == "__main__":
    main()