rdune71's picture
Implement enhanced debug panel with toggle controls and detailed status tracking
b5d5e39
raw
history blame
11.8 kB
import streamlit as st
import time
import os
import sys
from datetime import datetime
from pathlib import Path
sys.path.append(str(Path(__file__).parent))
from utils.config import config
from core.llm import send_to_ollama, send_to_hf
from core.session import session_manager
from core.memory import check_redis_health
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
st.set_page_config(page_title="AI Life Coach", page_icon="🧠", layout="wide")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "last_error" not in st.session_state:
st.session_state.last_error = ""
if "last_ollama_call_success" not in st.session_state:
st.session_state.last_ollama_call_success = None
if "last_ollama_call_time" not in st.session_state:
st.session_state.last_ollama_call_time = ""
if "last_ollama_response_preview" not in st.session_state:
st.session_state.last_ollama_response_preview = ""
if "last_hf_call_success" not in st.session_state:
st.session_state.last_hf_call_success = None
if "last_hf_call_time" not in st.session_state:
st.session_state.last_hf_call_time = ""
if "last_hf_response_preview" not in st.session_state:
st.session_state.last_hf_response_preview = ""
# Sidebar
with st.sidebar:
st.title("AI Life Coach")
st.markdown("Your personal AI-powered life development assistant")
# Model selection
model_options = {
"Mistral 7B (Local)": "mistral:latest",
"Llama 2 7B (Local)": "llama2:latest",
"OpenChat 3.5 (Local)": "openchat:latest"
}
selected_model_name = st.selectbox(
"Select Model",
options=list(model_options.keys()),
index=0
)
st.session_state.selected_model = model_options[selected_model_name]
# Ollama URL input
st.session_state.ngrok_url = st.text_input(
"Ollama Server URL",
value=st.session_state.get("ngrok_url", "http://localhost:11434"),
help="Enter the URL to your Ollama server"
)
# Conversation history
st.subheader("Conversation History")
if st.button("Clear History"):
st.session_state.messages = []
st.success("History cleared!")
# Enhanced Debug Panel
with st.expander("🔍 Advanced Debug", expanded=False):
st.subheader("System Controls")
# Fallback Mode Toggle
fallback_mode = st.checkbox(
"Enable Fallback Mode",
value=config.use_fallback,
help="Enable automatic fallback between providers"
)
# HF Endpoint Control
hf_enabled = st.checkbox(
"Enable HF Deep Analysis",
value=bool(config.hf_token),
help="Enable Hugging Face endpoint coordination"
)
# Web Search Toggle
web_search_enabled = st.checkbox(
"Enable Web Search",
value=bool(os.getenv("TAVILY_API_KEY")),
help="Enable Tavily/DDG web search integration"
)
st.subheader("Provider Status")
# Ollama Status
try:
from services.ollama_monitor import check_ollama_status
ollama_status = check_ollama_status()
if ollama_status.get("running"):
st.success(f"🦙 Ollama: Running ({ollama_status.get('model_loaded', 'Unknown')})")
else:
st.error("🦙 Ollama: Unavailable")
except Exception as e:
st.warning(f"🦙 Ollama: Status check failed")
# HF Endpoint Status
try:
from services.hf_endpoint_monitor import hf_monitor
hf_status = hf_monitor.get_status_summary()
if "🟢" in hf_status:
st.success(f"🤗 HF Endpoint: {hf_status.replace('🟢 ', '')}")
elif "🟡" in hf_status:
st.warning(f"🤗 HF Endpoint: {hf_status.replace('🟡 ', '')}")
else:
st.error(f"🤗 HF Endpoint: {hf_status.replace('🔴 ', '')}")
except Exception as e:
st.warning("🤗 HF Endpoint: Status check failed")
# Redis Status
redis_healthy = check_redis_health()
if redis_healthy:
st.success("💾 Redis: Connected")
else:
st.error("💾 Redis: Disconnected")
st.subheader("External Services")
# Web Search Status
if os.getenv("TAVILY_API_KEY"):
st.success("🔍 Web Search: Tavily API Active")
else:
st.info("🔍 Web Search: Not configured")
# Weather Service
if config.openweather_api_key:
st.success("🌤️ Weather: API Active")
else:
st.info("🌤️ Weather: Not configured")
# Session Stats
try:
user_session = session_manager.get_session("default_user")
conversation_length = len(user_session.get("conversation", []))
st.info(f"💬 Conversation Length: {conversation_length} messages")
except:
st.info("💬 Session: Not initialized")
# Real-time Web Search Status
st.subheader("Web Search Activity")
# Recent searches (if tracking enabled)
if 'recent_searches' in st.session_state:
for search in st.session_state.recent_searches[-3:]: # Last 3 searches
st.caption(f"🔍 {search['query'][:30]}... ({search['timestamp']})")
else:
st.info("No recent searches")
# Search test button
if st.button("🧪 Test Web Search"):
try:
from tavily import TavilyClient
if os.getenv("TAVILY_API_KEY"):
tavily = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))
test_result = tavily.search("AI life coach benefits", max_results=1)
st.success("✅ Web search working")
if test_result.get('results'):
st.caption(f"Sample: {test_result['results'][0].get('title', 'No title')}")
else:
st.warning("Web API key not configured")
except Exception as e:
st.error(f"❌ Web search test failed: {e}")
# Enhanced Configuration Display
st.subheader("Configuration Details")
# Provider Configuration
st.caption(f"**Primary Provider**: Ollama ({config.local_model_name})")
if config.hf_token:
st.caption(f"**Secondary Provider**: Hugging Face")
st.caption(f"**HF Endpoint**: {config.hf_api_url}")
# Environment Detection
env_type = "☁️ HF Space" if config.is_hf_space else "🏠 Local"
st.caption(f"**Environment**: {env_type}")
# Feature Flags
features = []
if config.use_fallback:
features.append("Fallback Mode")
if os.getenv("TAVILY_API_KEY"):
features.append("Web Search")
if config.openweather_api_key:
features.append("Weather Data")
if config.hf_token:
features.append("Deep Analysis")
if features:
st.caption(f"**Active Features**: {', '.join(features)}")
else:
st.caption("**Active Features**: None")
# Main chat interface
st.title("🧠 AI Life Coach")
st.markdown("Ask me anything about personal development, goal setting, or life advice!")
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input and send button
col1, col2 = st.columns([4, 1])
with col1:
user_input = st.text_input(
"Your message...",
key="user_message_input",
placeholder="Type your message here...",
label_visibility="collapsed"
)
with col2:
send_button = st.button("Send", key="send_message_button", use_container_width=True)
if send_button and user_input.strip():
# Display user message
with st.chat_message("user"):
st.markdown(user_input)
# Add user message to history
st.session_state.messages.append({"role": "user", "content": user_input})
# Reset error state
st.session_state.last_error = ""
# Get conversation history
user_session = session_manager.get_session("default_user")
conversation = user_session.get("conversation", [])
conversation_history = conversation[-5:] # Last 5 messages
conversation_history.append({"role": "user", "content": user_input})
# Send to backend
with st.chat_message("assistant"):
with st.spinner("AI Coach is thinking..."):
ai_response = None
backend_used = ""
error_msg = ""
# Try Ollama first if not falling back
if not config.use_fallback:
try:
ai_response = send_to_ollama(
user_input, conversation_history, st.session_state.ngrok_url, st.session_state.selected_model
)
backend_used = "Ollama"
# Capture success metadata
st.session_state.last_ollama_call_success = True
st.session_state.last_ollama_call_time = str(datetime.utcnow())
st.session_state.last_ollama_response_preview = ai_response[:200] if ai_response else ""
except Exception as e:
error_msg = f"Ollama error: {str(e)}"
# Capture failure metadata
st.session_state.last_ollama_call_success = False
st.session_state.last_ollama_call_time = str(datetime.utcnow())
st.session_state.last_ollama_response_preview = str(e)[:200]
# Fallback to Hugging Face if not ai_response and config.hf_token
if not ai_response and config.hf_token:
try:
ai_response = send_to_hf(user_input, conversation_history)
backend_used = "Hugging Face"
# Capture success metadata
st.session_state.last_hf_call_success = True
st.session_state.last_hf_call_time = str(datetime.utcnow())
st.session_state.last_hf_response_preview = ai_response[:200] if ai_response else ""
except Exception as e:
error_msg = f"Hugging Face error: {str(e)}"
# Capture failure metadata
st.session_state.last_hf_call_success = False
st.session_state.last_hf_call_time = str(datetime.utcnow())
st.session_state.last_hf_response_preview = str(e)[:200]
if ai_response:
st.markdown(f"{ai_response}")
# Update conversation history
conversation.append({"role": "user", "content": user_input})
conversation.append({"role": "assistant", "content": ai_response})
# Update session using the correct method
user_session["conversation"] = conversation
session_manager.update_session("default_user", user_session)
# Add assistant response to history
st.session_state.messages.append({"role": "assistant", "content": ai_response})
else:
st.error("Failed to get response from both providers.")
st.session_state.last_error = error_msg or "No response from either provider"
# Clear input by forcing rerun
st.experimental_rerun()