--- language: - en license: apache-2.0 library_name: transformers tags: - bert - text-classification - autotrain - runashllm - custom-model datasets: - your_dataset_name_here metrics: - accuracy - f1 widget: - text: I love this model! - text: This is terrible. model-index: - name: RunAshLLM results: - task: type: text-classification name: Text Classification dataset: name: YourDataset type: your_dataset_name_here metrics: - type: accuracy value: 0.92 - type: f1 value: 0.91 title: 'RunAshLLM ' colorFrom: yellow pinned: true short_description: 'Custom BERT Model Fine-Tuned ' --- # πŸš€ RunAshLLM β€” Custom BERT Model Fine-Tuned with AutoTrain **RunAshLLM** is a fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) model, optimized for text classification tasks using **Hugging Face AutoTrain**. Designed for speed, accuracy, and adaptability β€” whether you're classifying sentiment, intent, or custom categories. --- ## πŸ§ͺ Model Details - **Base Model**: `bert-base-uncased` - **Fine-tuning Tool**: [AutoTrain Advanced](https://huggingface.co/autotrain) - **Task**: Text Classification (adjustable) - **Language**: English - **Architecture**: `BertForSequenceClassification` - **Parameters**: ~110M --- ## πŸ’‘ Intended Uses RunAshLLM is ideal for: - Sentiment analysis (positive/negative/neutral) - Customer feedback categorization - Custom domain classification (e.g., medical, legal, finance) - Educational or research prototyping > ⚠️ Not intended for production without further validation and testing. --- ## πŸ› οΈ How to Use ### With `pipeline` (Simplest) ```python from transformers import pipeline classifier = pipeline("text-classification", model="your-hf-username/RunAshLLM") result = classifier("I love using AutoTrain to fine-tune models!") print(result) # Output: [{'label': 'POSITIVE', 'score': 0.987}] ### With Automodel (Advance ) from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM") model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM") inputs = tokenizer("This model is awesome!", return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() label = model.config.id2label[predicted_class_id] print(label) # e.g., "POSITIVE" Absolutely! Below is a complete, ready-to-use **Hugging Face BERT model configuration** and **customized model card** for a model named **`RunAshLLM`**, intended to be fine-tuned using **AutoTrain**. This includes: 1. βœ… `config.json` β€” BERT configuration (you can adjust architecture) 2. βœ… `README.md` β€” Custom Model Card for Hugging Face Hub 3. βœ… Instructions for AutoTrain fine-tuning --- ## 🧠 1. `config.json` β€” BERT Base Configuration (Customizable) Save this as `config.json` in your model repo or AutoTrain project folder. ```json { "architectures": ["BertForSequenceClassification"], "model_type": "bert", "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "type_vocab_size": 2, "vocab_size": 30522, "classifier_dropout": 0.1, "num_labels": 2, "id2label": { "0": "NEGATIVE", "1": "POSITIVE" }, "label2id": { "NEGATIVE": 0, "POSITIVE": 1 } } ``` > πŸ”§ *Customize `num_labels`, `id2label`, `label2id` based on your task (e.g., multiclass, NER, QA).* --- ### With `AutoModel` (Advanced) ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM") model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM") inputs = tokenizer("This model is awesome!", return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() label = model.config.id2label[predicted_class_id] print(label) # e.g., "POSITIVE" ``` --- ## πŸ“Š Evaluation Results | Metric | Score | |---------|-------| | Accuracy | 92% | | F1-Score | 91% | > *Results based on held-out test set from `YourDataset`. Your mileage may vary.* --- ## 🎯 Training Details - **Training Framework**: AutoTrain Advanced - **Dataset**: [YourDataset](https://huggingface.co/datasets/your_dataset_name_here) - **Epochs**: 3 - **Batch Size**: 16 - **Learning Rate**: 2e-5 - **Optimizer**: AdamW - **Hardware**: 1x NVIDIA T4 (via AutoTrain) --- ## πŸ“œ License Apache 2.0 β€” Feel free to use, modify, and distribute. See [LICENSE](LICENSE) for details. --- ## πŸ™Œ Acknowledgements - Hugging Face πŸ€— for AutoTrain and Transformers - Original BERT authors and maintainers - You β€” for pushing the boundaries of what fine-tuned models can do! --- > **Model Name Inspired By**: β€œRun Ash, Run!” β€” A playful nod to resilience, speed, and the spirit of experimentation. --- ## ❓ Questions? Open an Issue on the model repository or reach out on Hugging Face forums. --- ✨ **Made with AutoTrain. Deployed with confidence.** ``` > ✏️ **Remember to replace**: > - `your-hf-rammurmu/RunAshLLM` β†’ your actual Hugging Face model repo path > - `your_dataset_name_here` β†’ your dataset name > - Evaluation scores β†’ your actual metrics > - License β†’ if you choose a different one --- ## βš™οΈ 3. AutoTrain Setup Instructions ### Step 1: Prepare Dataset - Format: CSV or Hugging Face Dataset - Required columns: `text`, `label` (for classification) Example `train.csv`: ```csv text,label "I love this!",1 "This is awful.",0 ``` ### Step 2: Use AutoTrain CLI or Web UI #### Web UI (Easiest): 1. Go to [https://huggingface.co/autotrain](https://huggingface.co/autotrain) 2. Click β€œCreate Project” 3. Upload dataset 4. Choose β€œText Classification” 5. Select `bert-base-uncased` as base model 6. Set project name: `RunAshLLM` 7. Start training! #### CLI (Advanced): ```bash pip install autotrain-advanced autotrain llm --help # for LLMs, but for BERT classification: autotrain text-classification \ --model bert-base-uncased \ --data_path ./data \ --project_name RunAshLLM \ --token YOUR_HF_TOKEN \ --push_to_hub ``` --- ## πŸ“ Final Folder Structure (for manual upload) ``` RunAshLLM/ β”œβ”€β”€ config.json β”œβ”€β”€ README.md β”œβ”€β”€ LICENSE (optional) └── (AutoTrain will generate model weights after training) ``` --- ## βœ… After Training AutoTrain will automatically: - Upload model weights (`pytorch_model.bin`, `tf_model.h5`, etc.) - Push tokenizer files - Update model card if configured You just need to ensure your `README.md` and `config.json` are in the repo root. --- ## πŸŽ‰ Happy fine-tuning! πŸš€πŸ§ πŸ”₯