import os import spaces import shutil import subprocess import sys import copy import random import tempfile import warnings import time import gc import uuid from tqdm import tqdm import cv2 import numpy as np import torch from torch.nn import functional as F from PIL import Image import gradio as gr from diffusers import ( FlowMatchEulerDiscreteScheduler, SASolverScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, UniPCMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, ) from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline from diffusers.utils.export_utils import export_to_video from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig import aoti os.environ["TOKENIZERS_PARALLELISM"] = "true" warnings.filterwarnings("ignore") IS_ZERO_GPU = bool(os.getenv("SPACES_ZERO_GPU")) if IS_ZERO_GPU: print("Loading...") subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) # --- FRAME EXTRACTION JS & LOGIC --- # JS to grab timestamp from the output video get_timestamp_js = """ function() { // Select the video element specifically inside the component with id 'generated-video' const video = document.querySelector('#generated-video video'); if (video) { console.log("Video found! Time: " + video.currentTime); return video.currentTime; } else { console.log("No video element found."); return 0; } } """ def extract_frame(video_path, timestamp): # Safety check: if no video is present if not video_path: return None print(f"Extracting frame at timestamp: {timestamp}") cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return None # Calculate frame number fps = cap.get(cv2.CAP_PROP_FPS) target_frame_num = int(float(timestamp) * fps) # Cap total frames to prevent errors at the very end of video total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) if target_frame_num >= total_frames: target_frame_num = total_frames - 1 # Set position cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame_num) ret, frame = cap.read() cap.release() if ret: # Convert from BGR (OpenCV) to RGB (Gradio) # Gradio Image component handles Numpy array -> PIL conversion automatically return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) return None # --- END FRAME EXTRACTION LOGIC --- def clear_vram(): gc.collect() torch.cuda.empty_cache() # RIFE if not os.path.exists("RIFEv4.26_0921.zip"): print("Downloading RIFE Model...") subprocess.run([ "wget", "-q", "https://huggingface.co/r3gm/RIFE/resolve/main/RIFEv4.26_0921.zip", "-O", "RIFEv4.26_0921.zip" ], check=True) subprocess.run(["unzip", "-o", "RIFEv4.26_0921.zip"], check=True) # sys.path.append(os.getcwd()) from train_log.RIFE_HDv3 import Model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") rife_model = Model() rife_model.load_model("train_log", -1) rife_model.eval() @torch.no_grad() def interpolate_bits(frames_np, multiplier=2, scale=1.0): """ Interpolation maintaining Numpy Float 0-1 format. Args: frames_np: Numpy Array (Time, Height, Width, Channels) - Float32 [0.0, 1.0] multiplier: int (2, 4, 8) Returns: List of Numpy Arrays (Height, Width, Channels) - Float32 [0.0, 1.0] """ # Handle input shape if isinstance(frames_np, list): # Convert list of arrays to one big array for easier shape handling if needed, # but here we just grab dims from first frame T = len(frames_np) H, W, C = frames_np[0].shape else: T, H, W, C = frames_np.shape # 1. No Interpolation Case if multiplier < 2: # Just convert 4D array to list of 3D arrays if isinstance(frames_np, np.ndarray): return list(frames_np) return frames_np n_interp = multiplier - 1 # Pre-calc padding for RIFE (requires dimensions divisible by 32/scale) tmp = max(128, int(128 / scale)) ph = ((H - 1) // tmp + 1) * tmp pw = ((W - 1) // tmp + 1) * tmp padding = (0, pw - W, 0, ph - H) # Helper: Numpy (H, W, C) Float -> Tensor (1, C, H, W) Half def to_tensor(frame_np): # frame_np is float32 0-1 t = torch.from_numpy(frame_np).to(device) # HWC -> CHW t = t.permute(2, 0, 1).unsqueeze(0) return F.pad(t, padding).half() # Helper: Tensor (1, C, H, W) Half -> Numpy (H, W, C) Float def from_tensor(tensor): # Crop padding t = tensor[0, :, :H, :W] # CHW -> HWC t = t.permute(1, 2, 0) # Keep as float32, range 0-1 return t.float().cpu().numpy() def make_inference(I0, I1, n): if rife_model.version >= 3.9: res = [] for i in range(n): res.append(rife_model.inference(I0, I1, (i+1) * 1. / (n+1), scale)) return res else: middle = rife_model.inference(I0, I1, scale) if n == 1: return [middle] first_half = make_inference(I0, middle, n=n//2) second_half = make_inference(middle, I1, n=n//2) if n % 2: return [*first_half, middle, *second_half] else: return [*first_half, *second_half] output_frames = [] # Process Frames # Load first frame into GPU I1 = to_tensor(frames_np[0]) total_steps = T - 1 with tqdm(total=total_steps, desc="Interpolating", unit="frame") as pbar: for i in range(total_steps): I0 = I1 # Add original frame to output output_frames.append(from_tensor(I0)) # Load next frame I1 = to_tensor(frames_np[i+1]) # Generate intermediate frames mid_tensors = make_inference(I0, I1, n_interp) # Append intermediate frames for mid in mid_tensors: output_frames.append(from_tensor(mid)) if (i + 1) % 50 == 0: pbar.update(50) pbar.update(total_steps % 50) # Add the very last frame output_frames.append(from_tensor(I1)) # Cleanup del I0, I1, mid_tensors torch.cuda.empty_cache() return output_frames # WAN MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers" CACHE_DIR = os.path.expanduser("~/.cache/huggingface/") MAX_DIM = 832 MIN_DIM = 480 SQUARE_DIM = 640 MULTIPLE_OF = 16 MAX_SEED = np.iinfo(np.int32).max FIXED_FPS = 16 MIN_FRAMES_MODEL = 8 MAX_FRAMES_MODEL = 160 MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1) MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1) SCHEDULER_MAP = { "FlowMatchEulerDiscrete": FlowMatchEulerDiscreteScheduler, "SASolver": SASolverScheduler, "DEISMultistep": DEISMultistepScheduler, "DPMSolverMultistepInverse": DPMSolverMultistepInverseScheduler, "UniPCMultistep": UniPCMultistepScheduler, "DPMSolverMultistep": DPMSolverMultistepScheduler, "DPMSolverSinglestep": DPMSolverSinglestepScheduler, } pipe = WanImageToVideoPipeline.from_pretrained( "TestOrganizationPleaseIgnore/WAMU_v1_WAN2.2_I2V_LIGHTNING", torch_dtype=torch.bfloat16, ).to('cuda') original_scheduler = copy.deepcopy(pipe.scheduler) if os.path.exists(CACHE_DIR): shutil.rmtree(CACHE_DIR) print("Deleted Hugging Face cache.") else: print("No hub cache found.") quantize_(pipe.text_encoder, Int8WeightOnlyConfig()) quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig()) quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig()) aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da') aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da') # pipe.vae.enable_slicing() # pipe.vae.enable_tiling() default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走" def resize_image(image: Image.Image) -> Image.Image: width, height = image.size if width == height: return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS) aspect_ratio = width / height MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM image_to_resize = image if aspect_ratio > MAX_ASPECT_RATIO: target_w, target_h = MAX_DIM, MIN_DIM crop_width = int(round(height * MAX_ASPECT_RATIO)) left = (width - crop_width) // 2 image_to_resize = image.crop((left, 0, left + crop_width, height)) elif aspect_ratio < MIN_ASPECT_RATIO: target_w, target_h = MIN_DIM, MAX_DIM crop_height = int(round(width / MIN_ASPECT_RATIO)) top = (height - crop_height) // 2 image_to_resize = image.crop((0, top, width, top + crop_height)) else: if width > height: target_w = MAX_DIM target_h = int(round(target_w / aspect_ratio)) else: target_h = MAX_DIM target_w = int(round(target_h * aspect_ratio)) final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF final_w = max(MIN_DIM, min(MAX_DIM, final_w)) final_h = max(MIN_DIM, min(MAX_DIM, final_h)) return image_to_resize.resize((final_w, final_h), Image.LANCZOS) def resize_and_crop_to_match(target_image, reference_image): ref_width, ref_height = reference_image.size target_width, target_height = target_image.size scale = max(ref_width / target_width, ref_height / target_height) new_width, new_height = int(target_width * scale), int(target_height * scale) resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS) left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2 return resized.crop((left, top, left + ref_width, top + ref_height)) def get_num_frames(duration_seconds: float): return 1 + int(np.clip( int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL, )) def get_inference_duration( resized_image, processed_last_image, prompt, steps, negative_prompt, num_frames, guidance_scale, guidance_scale_2, current_seed, scheduler_name, flow_shift, frame_multiplier, quality, duration_seconds, progress ): BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624 BASE_STEP_DURATION = 15 width, height = resized_image.size factor = num_frames * width * height / BASE_FRAMES_HEIGHT_WIDTH step_duration = BASE_STEP_DURATION * factor ** 1.5 gen_time = int(steps) * step_duration print(gen_time) if guidance_scale > 1: gen_time = gen_time * 1.8 frame_factor = frame_multiplier // FIXED_FPS if frame_factor > 1: total_out_frames = (num_frames * frame_factor) - num_frames inter_time = (total_out_frames * 0.02) print(inter_time) gen_time += inter_time print("Time GPU", gen_time + 10) return 10 + gen_time @spaces.GPU(duration=get_inference_duration) def run_inference( resized_image, processed_last_image, prompt, steps, negative_prompt, num_frames, guidance_scale, guidance_scale_2, current_seed, scheduler_name, flow_shift, frame_multiplier, quality, duration_seconds, progress=gr.Progress(track_tqdm=True), ): scheduler_class = SCHEDULER_MAP.get(scheduler_name) if scheduler_class.__name__ != pipe.scheduler.config._class_name or flow_shift != pipe.scheduler.config.get("flow_shift", "shift"): config = copy.deepcopy(original_scheduler.config) if scheduler_class == FlowMatchEulerDiscreteScheduler: config['shift'] = flow_shift else: config['flow_shift'] = flow_shift pipe.scheduler = scheduler_class.from_config(config) clear_vram() task_name = str(uuid.uuid4())[:8] print(f"Generating {num_frames} frames, task: {task_name}, {duration_seconds}, {resized_image.size}") start = time.time() result = pipe( image=resized_image, last_image=processed_last_image, prompt=prompt, negative_prompt=negative_prompt, height=resized_image.height, width=resized_image.width, num_frames=num_frames, guidance_scale=float(guidance_scale), guidance_scale_2=float(guidance_scale_2), num_inference_steps=int(steps), generator=torch.Generator(device="cuda").manual_seed(current_seed), output_type="np" ) print("gen time passed:", time.time() - start) raw_frames_np = result.frames[0] # Returns (T, H, W, C) float32 pipe.scheduler = original_scheduler frame_factor = frame_multiplier // FIXED_FPS if frame_factor > 1: start = time.time() print(f"Processing frames (RIFE Multiplier: {frame_factor}x)...") rife_model.device() rife_model.flownet = rife_model.flownet.half() final_frames = interpolate_bits(raw_frames_np, multiplier=int(frame_factor)) print("Interpolation time passed:", time.time() - start) else: final_frames = list(raw_frames_np) final_fps = FIXED_FPS * int(frame_factor) with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: video_path = tmpfile.name start = time.time() with tqdm(total=3, desc="Rendering Media", unit="clip") as pbar: pbar.update(2) export_to_video(final_frames, video_path, fps=final_fps, quality=quality) pbar.update(1) print(f"Export time passed, {final_fps} FPS:", time.time() - start) return video_path, task_name def generate_video( input_image, last_image, prompt, steps=4, negative_prompt=default_negative_prompt, duration_seconds=MAX_DURATION, guidance_scale=1, guidance_scale_2=1, seed=42, randomize_seed=False, quality=5, scheduler="UniPCMultistep", flow_shift=6.0, frame_multiplier=16, video_component=True, progress=gr.Progress(track_tqdm=True), ): """ Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA. This function takes an input image and generates a video animation based on the provided prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA for fast generation in 4-8 steps. Args: input_image (PIL.Image): The input image to animate. Will be resized to target dimensions. last_image (PIL.Image, optional): The optional last image for the video. prompt (str): Text prompt describing the desired animation or motion. steps (int, optional): Number of inference steps. More steps = higher quality but slower. Defaults to 4. Range: 1-30. negative_prompt (str, optional): Negative prompt to avoid unwanted elements. Defaults to default_negative_prompt (contains unwanted visual artifacts). duration_seconds (float, optional): Duration of the generated video in seconds. Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS. guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence. Defaults to 1.0. Range: 0.0-20.0. guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence. Defaults to 1.0. Range: 0.0-20.0. seed (int, optional): Random seed for reproducible results. Defaults to 42. Range: 0 to MAX_SEED (2147483647). randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed. Defaults to False. quality (float, optional): Video output quality. Default is 5. Uses variable bit rate. Highest quality is 10, lowest is 1. scheduler (str, optional): The name of the scheduler to use for inference. Defaults to "UniPCMultistep". flow_shift (float, optional): The flow shift value for compatible schedulers. Defaults to 6.0. frame_multiplier (int, optional): The int value for fps enhancer video_component(bool, optional): Show video player in output. Defaults to True. progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True). Returns: tuple: A tuple containing: - video_path (str): Path for the video component. - video_path (str): Path for the file download component. Attempt to avoid reconversion in video component. - current_seed (int): The seed used for generation. Raises: gr.Error: If input_image is None (no image uploaded). Note: - Frame count is calculated as duration_seconds * FIXED_FPS (24) - Output dimensions are adjusted to be multiples of MOD_VALUE (32) - The function uses GPU acceleration via the @spaces.GPU decorator - Generation time varies based on steps and duration (see get_duration function) """ if input_image is None: raise gr.Error("Please upload an input image.") num_frames = get_num_frames(duration_seconds) current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) resized_image = resize_image(input_image) processed_last_image = None if last_image: processed_last_image = resize_and_crop_to_match(last_image, resized_image) video_path, task_n = run_inference( resized_image, processed_last_image, prompt, steps, negative_prompt, num_frames, guidance_scale, guidance_scale_2, current_seed, scheduler, flow_shift, frame_multiplier, quality, duration_seconds, progress, ) print(f"GPU complete: {task_n}") return (video_path if video_component else None), video_path, current_seed CSS = """ #hidden-timestamp { opacity: 0; height: 0px; width: 0px; margin: 0px; padding: 0px; overflow: hidden; position: absolute; pointer-events: none; } """ with gr.Blocks(delete_cache=(3600, 10800)) as demo: gr.Markdown("## WAMU - Wan 2.2 I2V (14B) 🐢") gr.Markdown("#### ℹ️ **A Note on Performance:** This version prioritizes a straightforward setup over maximum speed, so performance may vary.") gr.Markdown("Run Wan 2.2 in just 4-8 steps, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU") with gr.Row(): with gr.Column(): input_image_component = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"]) prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.") frame_multi = gr.Dropdown( choices=[FIXED_FPS, FIXED_FPS*2, FIXED_FPS*4, FIXED_FPS*8], value=FIXED_FPS, label="Video Fluidity (Frames per Second)", info="Extra frames will be generated using flow estimation, which estimates motion between frames to make the video smoother." ) with gr.Accordion("Advanced Settings", open=False): last_image_component = gr.Image(type="pil", label="Last Image (Optional)", sources=["upload", "clipboard"]) negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, info="Used if any Guidance Scale > 1.", lines=3) quality_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Video Quality", info="If set to 10, the generated video may be too large and won't play in the Gradio preview.") seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps") guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage", info="Values above 1 increase GPU usage and may take longer to process.") guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage") scheduler_dropdown = gr.Dropdown( label="Scheduler", choices=list(SCHEDULER_MAP.keys()), value="UniPCMultistep", info="Select a custom scheduler." ) flow_shift_slider = gr.Slider(minimum=0.5, maximum=15.0, step=0.1, value=3.0, label="Flow Shift") play_result_video = gr.Checkbox(label="Display result", value=True, interactive=True) org_name = "TestOrganizationPleaseIgnore" gr.Markdown(f"[ZeroGPU help, tips and troubleshooting](https://huggingface.co/datasets/{org_name}/help/blob/main/gpu_help.md)") generate_button = gr.Button("Generate Video", variant="primary") with gr.Column(): # ASSIGNED elem_id="generated-video" so JS can find it video_output = gr.Video(label="Generated Video", autoplay=True, sources=["upload"], buttons=["download", "share"], interactive=True, elem_id="generated-video") # --- Frame Grabbing UI --- with gr.Row(): grab_frame_btn = gr.Button("📸 Use Current Frame as Input", variant="secondary") timestamp_box = gr.Number(value=0, label="Timestamp", visible=True, elem_id="hidden-timestamp") # ------------------------- file_output = gr.File(label="Download Video") ui_inputs = [ input_image_component, last_image_component, prompt_input, steps_slider, negative_prompt_input, duration_seconds_input, guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox, quality_slider, scheduler_dropdown, flow_shift_slider, frame_multi, play_result_video ] generate_button.click( fn=generate_video, inputs=ui_inputs, outputs=[video_output, file_output, seed_input] ) # --- Frame Grabbing Events --- # 1. Click button -> JS runs -> puts time in hidden number box grab_frame_btn.click( fn=None, inputs=None, outputs=[timestamp_box], js=get_timestamp_js ) # 2. Hidden number box changes -> Python runs -> puts frame in Input Image timestamp_box.change( fn=extract_frame, inputs=[video_output, timestamp_box], outputs=[input_image_component] ) if __name__ == "__main__": demo.queue().launch( mcp_server=True, css=CSS, show_error=True, )