Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- model/loss.py +128 -0
- model/pytorch_msssim/__init__.py +198 -0
- model/warplayer.py +24 -0
- requirements.txt +7 -0
model/loss.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torchvision.models as models
|
| 6 |
+
|
| 7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class EPE(nn.Module):
|
| 11 |
+
def __init__(self):
|
| 12 |
+
super(EPE, self).__init__()
|
| 13 |
+
|
| 14 |
+
def forward(self, flow, gt, loss_mask):
|
| 15 |
+
loss_map = (flow - gt.detach()) ** 2
|
| 16 |
+
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
|
| 17 |
+
return (loss_map * loss_mask)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class Ternary(nn.Module):
|
| 21 |
+
def __init__(self):
|
| 22 |
+
super(Ternary, self).__init__()
|
| 23 |
+
patch_size = 7
|
| 24 |
+
out_channels = patch_size * patch_size
|
| 25 |
+
self.w = np.eye(out_channels).reshape(
|
| 26 |
+
(patch_size, patch_size, 1, out_channels))
|
| 27 |
+
self.w = np.transpose(self.w, (3, 2, 0, 1))
|
| 28 |
+
self.w = torch.tensor(self.w).float().to(device)
|
| 29 |
+
|
| 30 |
+
def transform(self, img):
|
| 31 |
+
patches = F.conv2d(img, self.w, padding=3, bias=None)
|
| 32 |
+
transf = patches - img
|
| 33 |
+
transf_norm = transf / torch.sqrt(0.81 + transf**2)
|
| 34 |
+
return transf_norm
|
| 35 |
+
|
| 36 |
+
def rgb2gray(self, rgb):
|
| 37 |
+
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
|
| 38 |
+
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
|
| 39 |
+
return gray
|
| 40 |
+
|
| 41 |
+
def hamming(self, t1, t2):
|
| 42 |
+
dist = (t1 - t2) ** 2
|
| 43 |
+
dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
|
| 44 |
+
return dist_norm
|
| 45 |
+
|
| 46 |
+
def valid_mask(self, t, padding):
|
| 47 |
+
n, _, h, w = t.size()
|
| 48 |
+
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
|
| 49 |
+
mask = F.pad(inner, [padding] * 4)
|
| 50 |
+
return mask
|
| 51 |
+
|
| 52 |
+
def forward(self, img0, img1):
|
| 53 |
+
img0 = self.transform(self.rgb2gray(img0))
|
| 54 |
+
img1 = self.transform(self.rgb2gray(img1))
|
| 55 |
+
return self.hamming(img0, img1) * self.valid_mask(img0, 1)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class SOBEL(nn.Module):
|
| 59 |
+
def __init__(self):
|
| 60 |
+
super(SOBEL, self).__init__()
|
| 61 |
+
self.kernelX = torch.tensor([
|
| 62 |
+
[1, 0, -1],
|
| 63 |
+
[2, 0, -2],
|
| 64 |
+
[1, 0, -1],
|
| 65 |
+
]).float()
|
| 66 |
+
self.kernelY = self.kernelX.clone().T
|
| 67 |
+
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
|
| 68 |
+
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
|
| 69 |
+
|
| 70 |
+
def forward(self, pred, gt):
|
| 71 |
+
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
|
| 72 |
+
img_stack = torch.cat(
|
| 73 |
+
[pred.reshape(N*C, 1, H, W), gt.reshape(N*C, 1, H, W)], 0)
|
| 74 |
+
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
|
| 75 |
+
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
|
| 76 |
+
pred_X, gt_X = sobel_stack_x[:N*C], sobel_stack_x[N*C:]
|
| 77 |
+
pred_Y, gt_Y = sobel_stack_y[:N*C], sobel_stack_y[N*C:]
|
| 78 |
+
|
| 79 |
+
L1X, L1Y = torch.abs(pred_X-gt_X), torch.abs(pred_Y-gt_Y)
|
| 80 |
+
loss = (L1X+L1Y)
|
| 81 |
+
return loss
|
| 82 |
+
|
| 83 |
+
class MeanShift(nn.Conv2d):
|
| 84 |
+
def __init__(self, data_mean, data_std, data_range=1, norm=True):
|
| 85 |
+
c = len(data_mean)
|
| 86 |
+
super(MeanShift, self).__init__(c, c, kernel_size=1)
|
| 87 |
+
std = torch.Tensor(data_std)
|
| 88 |
+
self.weight.data = torch.eye(c).view(c, c, 1, 1)
|
| 89 |
+
if norm:
|
| 90 |
+
self.weight.data.div_(std.view(c, 1, 1, 1))
|
| 91 |
+
self.bias.data = -1 * data_range * torch.Tensor(data_mean)
|
| 92 |
+
self.bias.data.div_(std)
|
| 93 |
+
else:
|
| 94 |
+
self.weight.data.mul_(std.view(c, 1, 1, 1))
|
| 95 |
+
self.bias.data = data_range * torch.Tensor(data_mean)
|
| 96 |
+
self.requires_grad = False
|
| 97 |
+
|
| 98 |
+
class VGGPerceptualLoss(torch.nn.Module):
|
| 99 |
+
def __init__(self, rank=0):
|
| 100 |
+
super(VGGPerceptualLoss, self).__init__()
|
| 101 |
+
blocks = []
|
| 102 |
+
pretrained = True
|
| 103 |
+
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
|
| 104 |
+
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
|
| 105 |
+
for param in self.parameters():
|
| 106 |
+
param.requires_grad = False
|
| 107 |
+
|
| 108 |
+
def forward(self, X, Y, indices=None):
|
| 109 |
+
X = self.normalize(X)
|
| 110 |
+
Y = self.normalize(Y)
|
| 111 |
+
indices = [2, 7, 12, 21, 30]
|
| 112 |
+
weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10/1.5]
|
| 113 |
+
k = 0
|
| 114 |
+
loss = 0
|
| 115 |
+
for i in range(indices[-1]):
|
| 116 |
+
X = self.vgg_pretrained_features[i](X)
|
| 117 |
+
Y = self.vgg_pretrained_features[i](Y)
|
| 118 |
+
if (i+1) in indices:
|
| 119 |
+
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
|
| 120 |
+
k += 1
|
| 121 |
+
return loss
|
| 122 |
+
|
| 123 |
+
if __name__ == '__main__':
|
| 124 |
+
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
| 125 |
+
img1 = torch.tensor(np.random.normal(
|
| 126 |
+
0, 1, (3, 3, 256, 256))).float().to(device)
|
| 127 |
+
ternary_loss = Ternary()
|
| 128 |
+
print(ternary_loss(img0, img1).shape)
|
model/pytorch_msssim/__init__.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from math import exp
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
+
|
| 8 |
+
def gaussian(window_size, sigma):
|
| 9 |
+
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
| 10 |
+
return gauss/gauss.sum()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def create_window(window_size, channel=1):
|
| 14 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
| 15 |
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device)
|
| 16 |
+
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
|
| 17 |
+
return window
|
| 18 |
+
|
| 19 |
+
def create_window_3d(window_size, channel=1):
|
| 20 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
| 21 |
+
_2D_window = _1D_window.mm(_1D_window.t())
|
| 22 |
+
_3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t())
|
| 23 |
+
window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device)
|
| 24 |
+
return window
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
|
| 28 |
+
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
|
| 29 |
+
if val_range is None:
|
| 30 |
+
if torch.max(img1) > 128:
|
| 31 |
+
max_val = 255
|
| 32 |
+
else:
|
| 33 |
+
max_val = 1
|
| 34 |
+
|
| 35 |
+
if torch.min(img1) < -0.5:
|
| 36 |
+
min_val = -1
|
| 37 |
+
else:
|
| 38 |
+
min_val = 0
|
| 39 |
+
L = max_val - min_val
|
| 40 |
+
else:
|
| 41 |
+
L = val_range
|
| 42 |
+
|
| 43 |
+
padd = 0
|
| 44 |
+
(_, channel, height, width) = img1.size()
|
| 45 |
+
if window is None:
|
| 46 |
+
real_size = min(window_size, height, width)
|
| 47 |
+
window = create_window(real_size, channel=channel).to(img1.device).type_as(img1)
|
| 48 |
+
|
| 49 |
+
mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel)
|
| 50 |
+
mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel)
|
| 51 |
+
|
| 52 |
+
mu1_sq = mu1.pow(2)
|
| 53 |
+
mu2_sq = mu2.pow(2)
|
| 54 |
+
mu1_mu2 = mu1 * mu2
|
| 55 |
+
|
| 56 |
+
sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_sq
|
| 57 |
+
sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu2_sq
|
| 58 |
+
sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_mu2
|
| 59 |
+
|
| 60 |
+
C1 = (0.01 * L) ** 2
|
| 61 |
+
C2 = (0.03 * L) ** 2
|
| 62 |
+
|
| 63 |
+
v1 = 2.0 * sigma12 + C2
|
| 64 |
+
v2 = sigma1_sq + sigma2_sq + C2
|
| 65 |
+
cs = torch.mean(v1 / v2) # contrast sensitivity
|
| 66 |
+
|
| 67 |
+
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
|
| 68 |
+
|
| 69 |
+
if size_average:
|
| 70 |
+
ret = ssim_map.mean()
|
| 71 |
+
else:
|
| 72 |
+
ret = ssim_map.mean(1).mean(1).mean(1)
|
| 73 |
+
|
| 74 |
+
if full:
|
| 75 |
+
return ret, cs
|
| 76 |
+
return ret
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
|
| 80 |
+
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
|
| 81 |
+
if val_range is None:
|
| 82 |
+
if torch.max(img1) > 128:
|
| 83 |
+
max_val = 255
|
| 84 |
+
else:
|
| 85 |
+
max_val = 1
|
| 86 |
+
|
| 87 |
+
if torch.min(img1) < -0.5:
|
| 88 |
+
min_val = -1
|
| 89 |
+
else:
|
| 90 |
+
min_val = 0
|
| 91 |
+
L = max_val - min_val
|
| 92 |
+
else:
|
| 93 |
+
L = val_range
|
| 94 |
+
|
| 95 |
+
padd = 0
|
| 96 |
+
(_, _, height, width) = img1.size()
|
| 97 |
+
if window is None:
|
| 98 |
+
real_size = min(window_size, height, width)
|
| 99 |
+
window = create_window_3d(real_size, channel=1).to(img1.device).type_as(img1)
|
| 100 |
+
# Channel is set to 1 since we consider color images as volumetric images
|
| 101 |
+
|
| 102 |
+
img1 = img1.unsqueeze(1)
|
| 103 |
+
img2 = img2.unsqueeze(1)
|
| 104 |
+
|
| 105 |
+
mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1)
|
| 106 |
+
mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1)
|
| 107 |
+
|
| 108 |
+
mu1_sq = mu1.pow(2)
|
| 109 |
+
mu2_sq = mu2.pow(2)
|
| 110 |
+
mu1_mu2 = mu1 * mu2
|
| 111 |
+
|
| 112 |
+
sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_sq
|
| 113 |
+
sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu2_sq
|
| 114 |
+
sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_mu2
|
| 115 |
+
|
| 116 |
+
C1 = (0.01 * L) ** 2
|
| 117 |
+
C2 = (0.03 * L) ** 2
|
| 118 |
+
|
| 119 |
+
v1 = 2.0 * sigma12 + C2
|
| 120 |
+
v2 = sigma1_sq + sigma2_sq + C2
|
| 121 |
+
cs = torch.mean(v1 / v2) # contrast sensitivity
|
| 122 |
+
|
| 123 |
+
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
|
| 124 |
+
|
| 125 |
+
if size_average:
|
| 126 |
+
ret = ssim_map.mean()
|
| 127 |
+
else:
|
| 128 |
+
ret = ssim_map.mean(1).mean(1).mean(1)
|
| 129 |
+
|
| 130 |
+
if full:
|
| 131 |
+
return ret, cs
|
| 132 |
+
return ret
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False):
|
| 136 |
+
device = img1.device
|
| 137 |
+
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device).type_as(img1)
|
| 138 |
+
levels = weights.size()[0]
|
| 139 |
+
mssim = []
|
| 140 |
+
mcs = []
|
| 141 |
+
for _ in range(levels):
|
| 142 |
+
sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
|
| 143 |
+
mssim.append(sim)
|
| 144 |
+
mcs.append(cs)
|
| 145 |
+
|
| 146 |
+
img1 = F.avg_pool2d(img1, (2, 2))
|
| 147 |
+
img2 = F.avg_pool2d(img2, (2, 2))
|
| 148 |
+
|
| 149 |
+
mssim = torch.stack(mssim)
|
| 150 |
+
mcs = torch.stack(mcs)
|
| 151 |
+
|
| 152 |
+
# Normalize (to avoid NaNs during training unstable models, not compliant with original definition)
|
| 153 |
+
if normalize:
|
| 154 |
+
mssim = (mssim + 1) / 2
|
| 155 |
+
mcs = (mcs + 1) / 2
|
| 156 |
+
|
| 157 |
+
pow1 = mcs ** weights
|
| 158 |
+
pow2 = mssim ** weights
|
| 159 |
+
# From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
|
| 160 |
+
output = torch.prod(pow1[:-1] * pow2[-1])
|
| 161 |
+
return output
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# Classes to re-use window
|
| 165 |
+
class SSIM(torch.nn.Module):
|
| 166 |
+
def __init__(self, window_size=11, size_average=True, val_range=None):
|
| 167 |
+
super(SSIM, self).__init__()
|
| 168 |
+
self.window_size = window_size
|
| 169 |
+
self.size_average = size_average
|
| 170 |
+
self.val_range = val_range
|
| 171 |
+
|
| 172 |
+
# Assume 3 channel for SSIM
|
| 173 |
+
self.channel = 3
|
| 174 |
+
self.window = create_window(window_size, channel=self.channel)
|
| 175 |
+
|
| 176 |
+
def forward(self, img1, img2):
|
| 177 |
+
(_, channel, _, _) = img1.size()
|
| 178 |
+
|
| 179 |
+
if channel == self.channel and self.window.dtype == img1.dtype:
|
| 180 |
+
window = self.window
|
| 181 |
+
else:
|
| 182 |
+
window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
|
| 183 |
+
self.window = window
|
| 184 |
+
self.channel = channel
|
| 185 |
+
|
| 186 |
+
_ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)
|
| 187 |
+
dssim = (1 - _ssim) / 2
|
| 188 |
+
return dssim
|
| 189 |
+
|
| 190 |
+
class MSSSIM(torch.nn.Module):
|
| 191 |
+
def __init__(self, window_size=11, size_average=True, channel=3):
|
| 192 |
+
super(MSSSIM, self).__init__()
|
| 193 |
+
self.window_size = window_size
|
| 194 |
+
self.size_average = size_average
|
| 195 |
+
self.channel = channel
|
| 196 |
+
|
| 197 |
+
def forward(self, img1, img2):
|
| 198 |
+
return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)
|
model/warplayer.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 5 |
+
backwarp_tenGrid = {}
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def warp(tenInput, tenFlow):
|
| 9 |
+
k = (str(tenFlow.device), str(tenFlow.size()))
|
| 10 |
+
if k not in backwarp_tenGrid:
|
| 11 |
+
tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=tenFlow.device).view(
|
| 12 |
+
1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
|
| 13 |
+
tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=tenFlow.device).view(
|
| 14 |
+
1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
|
| 15 |
+
backwarp_tenGrid[k] = torch.cat(
|
| 16 |
+
[tenHorizontal, tenVertical], 1).to(tenFlow.device)
|
| 17 |
+
|
| 18 |
+
tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
|
| 19 |
+
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1)
|
| 20 |
+
|
| 21 |
+
grid = backwarp_tenGrid[k].type_as(tenFlow)
|
| 22 |
+
|
| 23 |
+
g = (grid + tenFlow).permute(0, 2, 3, 1)
|
| 24 |
+
return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True)
|
requirements.txt
CHANGED
|
@@ -10,3 +10,10 @@ imageio
|
|
| 10 |
imageio-ffmpeg
|
| 11 |
opencv-python
|
| 12 |
torchao==0.11.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
imageio-ffmpeg
|
| 11 |
opencv-python
|
| 12 |
torchao==0.11.0
|
| 13 |
+
|
| 14 |
+
numpy>=1.16, <=1.23.5
|
| 15 |
+
# tqdm>=4.35.0
|
| 16 |
+
# sk-video>=1.1.10
|
| 17 |
+
# opencv-python>=4.1.2
|
| 18 |
+
# moviepy>=1.0.3
|
| 19 |
+
torchvision
|