File size: 23,759 Bytes
3f29218
dc155d4
3f29218
 
 
 
dc155d4
3f29218
 
 
84712e3
6ab11e0
40f3527
e75a609
3f29218
 
 
 
 
dc155d4
3f29218
67e379c
 
 
 
 
 
 
 
 
3f29218
 
67e379c
3f29218
 
 
d3934d7
3f29218
a7b0a4c
 
 
 
 
3f29218
330958f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ab11e0
330958f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ab11e0
 
 
 
 
3f29218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ab11e0
3f29218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ab11e0
3f29218
 
 
 
40f3527
3f29218
40f3527
 
 
 
 
 
 
 
 
 
 
 
3f29218
40f3527
 
 
 
 
 
 
 
 
 
3f29218
 
 
 
 
 
 
6ab11e0
3f29218
ab273c0
76bc6e5
3f29218
ab273c0
bd1db85
 
 
 
dc155d4
 
1f4a684
dc155d4
a3f2efe
dc155d4
e1fdb35
 
76bc6e5
67e379c
 
 
 
 
 
 
 
 
 
1513fb8
0aa57df
dc155d4
 
3bab44d
67e379c
bfcaeb4
 
 
 
 
 
e75a609
 
 
bd1db85
e75a609
 
dc155d4
6ab11e0
 
 
dc155d4
 
 
1513fb8
76bc6e5
bd1db85
 
 
3f29218
bd1db85
1513fb8
 
bd1db85
 
 
 
 
 
 
 
 
 
 
 
76bc6e5
3f29218
bd1db85
 
3f29218
bd1db85
 
 
 
 
 
 
 
 
dc155d4
1513fb8
 
 
 
 
 
 
 
 
 
e75a609
 
 
 
 
 
 
 
1513fb8
 
 
dc155d4
4887278
dc155d4
1513fb8
dc155d4
6fc9eeb
1513fb8
67e379c
 
3f29218
 
 
67e379c
dc155d4
e75a609
 
1513fb8
 
e75a609
3f29218
 
 
6ab11e0
3f29218
40f3527
 
 
13df71f
3f29218
 
 
 
 
dc155d4
1513fb8
 
 
 
 
 
 
 
 
 
 
 
67e379c
 
3f29218
 
 
1513fb8
 
67e379c
d409ae5
67e379c
 
 
 
 
 
 
6ab11e0
 
 
 
3f29218
67e379c
1513fb8
 
 
 
 
 
 
 
 
 
 
3f29218
 
 
 
6ab11e0
67e379c
3a9a5d3
40f3527
 
330958f
40f3527
1931223
 
40f3527
330958f
3f29218
 
 
40f3527
3f29218
 
 
 
 
40f3527
 
 
 
330958f
6ab11e0
 
 
1513fb8
dc155d4
 
1513fb8
dc155d4
1513fb8
dc155d4
1513fb8
 
 
 
 
e1fdb35
67e379c
 
40f3527
330958f
dc155d4
 
 
a25b815
dc155d4
76bc6e5
a25b815
dc155d4
 
1513fb8
dc155d4
a87b08e
 
1513fb8
dc155d4
 
76bc6e5
dc155d4
76bc6e5
 
 
dc155d4
 
 
 
e1fdb35
732e39d
67e379c
 
3f29218
330958f
 
dc155d4
 
 
54f2e32
 
 
dc155d4
 
76bc6e5
 
 
 
 
dc155d4
3f29218
dc155d4
 
1513fb8
e75a609
dc155d4
76bc6e5
dc155d4
1513fb8
 
 
 
6ab11e0
1513fb8
 
 
 
 
 
 
 
 
67e379c
 
3f29218
 
 
1513fb8
 
6ab11e0
dc155d4
330958f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc155d4
1513fb8
bfcaeb4
40f3527
330958f
6ab11e0
3f29218
dc155d4
 
6ab11e0
dc155d4
df5cdbb
3f29218
40f3527
 
 
 
3f29218
dc155d4
40f3527
df5cdbb
330958f
dc155d4
 
40f3527
330958f
6ab11e0
67e379c
 
 
5766468
 
67e379c
 
330958f
6ab11e0
40f3527
dc155d4
 
3f29218
dc155d4
330958f
6ab11e0
330958f
 
 
 
 
 
 
54f2e32
1513fb8
dc155d4
1513fb8
dc155d4
e1fdb35
330958f
 
dc155d4
3f29218
 
 
 
 
 
330958f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc155d4
 
330958f
 
 
40f3527
330958f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import os
import spaces
import shutil
import subprocess
import sys
import copy
import random
import tempfile
import warnings
import time
import gc
import uuid
from tqdm import tqdm

import cv2
import numpy as np
import torch
from torch.nn import functional as F
from PIL import Image

import gradio as gr
from diffusers import (
    FlowMatchEulerDiscreteScheduler,
    SASolverScheduler,
    DEISMultistepScheduler,
    DPMSolverMultistepInverseScheduler,
    UniPCMultistepScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
)
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.utils.export_utils import export_to_video

from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
import aoti

os.environ["TOKENIZERS_PARALLELISM"] = "true"
warnings.filterwarnings("ignore")
IS_ZERO_GPU = bool(os.getenv("SPACES_ZERO_GPU"))

if IS_ZERO_GPU:
    print("Loading...")
    subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)

# --- FRAME EXTRACTION JS & LOGIC ---

# JS to grab timestamp from the output video
get_timestamp_js = """
function() {
    // Select the video element specifically inside the component with id 'generated-video'
    const video = document.querySelector('#generated-video video');
    
    if (video) {
        console.log("Video found! Time: " + video.currentTime);
        return video.currentTime;
    } else {
        console.log("No video element found.");
        return 0;
    }
}
"""


def extract_frame(video_path, timestamp):
    # Safety check: if no video is present
    if not video_path:
        return None
    
    print(f"Extracting frame at timestamp: {timestamp}") 
    
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        return None

    # Calculate frame number
    fps = cap.get(cv2.CAP_PROP_FPS)
    target_frame_num = int(float(timestamp) * fps)
    
    # Cap total frames to prevent errors at the very end of video
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    if target_frame_num >= total_frames:
        target_frame_num = total_frames - 1
    
    # Set position
    cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame_num)
    ret, frame = cap.read()
    cap.release()
    
    if ret:
        # Convert from BGR (OpenCV) to RGB (Gradio)
        # Gradio Image component handles Numpy array -> PIL conversion automatically
        return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    
    return None

# --- END FRAME EXTRACTION LOGIC ---


def clear_vram():
    gc.collect()
    torch.cuda.empty_cache()


# RIFE
if not os.path.exists("RIFEv4.26_0921.zip"):
    print("Downloading RIFE Model...")
    subprocess.run([
        "wget", "-q",
        "https://huggingface.co/r3gm/RIFE/resolve/main/RIFEv4.26_0921.zip",
        "-O", "RIFEv4.26_0921.zip"
    ], check=True)
    subprocess.run(["unzip", "-o", "RIFEv4.26_0921.zip"], check=True)

# sys.path.append(os.getcwd())

from train_log.RIFE_HDv3 import Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
rife_model = Model()
rife_model.load_model("train_log", -1)
rife_model.eval()


@torch.no_grad()
def interpolate_bits(frames_np, multiplier=2, scale=1.0):
    """
    Interpolation maintaining Numpy Float 0-1 format.
    Args:
        frames_np: Numpy Array (Time, Height, Width, Channels) - Float32 [0.0, 1.0]
        multiplier: int (2, 4, 8)
    Returns:
        List of Numpy Arrays (Height, Width, Channels) - Float32 [0.0, 1.0]
    """
    
    # Handle input shape
    if isinstance(frames_np, list):
        # Convert list of arrays to one big array for easier shape handling if needed, 
        # but here we just grab dims from first frame
        T = len(frames_np)
        H, W, C = frames_np[0].shape
    else:
        T, H, W, C = frames_np.shape

    # 1. No Interpolation Case
    if multiplier < 2:
        # Just convert 4D array to list of 3D arrays
        if isinstance(frames_np, np.ndarray):
            return list(frames_np)
        return frames_np

    n_interp = multiplier - 1
    
    # Pre-calc padding for RIFE (requires dimensions divisible by 32/scale)
    tmp = max(128, int(128 / scale))
    ph = ((H - 1) // tmp + 1) * tmp
    pw = ((W - 1) // tmp + 1) * tmp
    padding = (0, pw - W, 0, ph - H)

    # Helper: Numpy (H, W, C) Float -> Tensor (1, C, H, W) Half
    def to_tensor(frame_np):
        # frame_np is float32 0-1
        t = torch.from_numpy(frame_np).to(device)
        # HWC -> CHW
        t = t.permute(2, 0, 1).unsqueeze(0)
        return F.pad(t, padding).half()

    # Helper: Tensor (1, C, H, W) Half -> Numpy (H, W, C) Float
    def from_tensor(tensor):
        # Crop padding
        t = tensor[0, :, :H, :W]
        # CHW -> HWC
        t = t.permute(1, 2, 0)
        # Keep as float32, range 0-1
        return t.float().cpu().numpy()

    def make_inference(I0, I1, n):
        if rife_model.version >= 3.9:
            res = []
            for i in range(n):
                res.append(rife_model.inference(I0, I1, (i+1) * 1. / (n+1), scale))
            return res
        else:
            middle = rife_model.inference(I0, I1, scale)
            if n == 1:
                return [middle]
            first_half = make_inference(I0, middle, n=n//2)
            second_half = make_inference(middle, I1, n=n//2)
            if n % 2:
                return [*first_half, middle, *second_half]
            else:
                return [*first_half, *second_half]

    output_frames = []

    # Process Frames
    # Load first frame into GPU
    I1 = to_tensor(frames_np[0])

    total_steps = T - 1

    with tqdm(total=total_steps, desc="Interpolating", unit="frame") as pbar:
    
        for i in range(total_steps):
            I0 = I1
            # Add original frame to output
            output_frames.append(from_tensor(I0))
    
            # Load next frame
            I1 = to_tensor(frames_np[i+1])
    
            # Generate intermediate frames
            mid_tensors = make_inference(I0, I1, n_interp)
    
            # Append intermediate frames
            for mid in mid_tensors:
                output_frames.append(from_tensor(mid))

            if (i + 1) % 50 == 0:
                pbar.update(50)
        pbar.update(total_steps % 50)
        
        # Add the very last frame
        output_frames.append(from_tensor(I1))
    
    # Cleanup
    del I0, I1, mid_tensors
    torch.cuda.empty_cache()

    return output_frames


# WAN

MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
CACHE_DIR = os.path.expanduser("~/.cache/huggingface/")

MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 160

MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)

SCHEDULER_MAP = {
    "FlowMatchEulerDiscrete": FlowMatchEulerDiscreteScheduler,
    "SASolver": SASolverScheduler,
    "DEISMultistep": DEISMultistepScheduler,
    "DPMSolverMultistepInverse": DPMSolverMultistepInverseScheduler,
    "UniPCMultistep": UniPCMultistepScheduler,
    "DPMSolverMultistep": DPMSolverMultistepScheduler,
    "DPMSolverSinglestep": DPMSolverSinglestepScheduler,
}

pipe = WanImageToVideoPipeline.from_pretrained(
    "TestOrganizationPleaseIgnore/WAMU_v1_WAN2.2_I2V_LIGHTNING",
    torch_dtype=torch.bfloat16,
).to('cuda')
original_scheduler = copy.deepcopy(pipe.scheduler)

if os.path.exists(CACHE_DIR):
    shutil.rmtree(CACHE_DIR)
    print("Deleted Hugging Face cache.")
else:
    print("No hub cache found.")

quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())

aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')

# pipe.vae.enable_slicing()
# pipe.vae.enable_tiling()

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"


def resize_image(image: Image.Image) -> Image.Image:
    width, height = image.size
    if width == height:
        return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
    
    aspect_ratio = width / height
    MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
    MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM

    image_to_resize = image
    if aspect_ratio > MAX_ASPECT_RATIO:
        target_w, target_h = MAX_DIM, MIN_DIM
        crop_width = int(round(height * MAX_ASPECT_RATIO))
        left = (width - crop_width) // 2
        image_to_resize = image.crop((left, 0, left + crop_width, height))
    elif aspect_ratio < MIN_ASPECT_RATIO:
        target_w, target_h = MIN_DIM, MAX_DIM
        crop_height = int(round(width / MIN_ASPECT_RATIO))
        top = (height - crop_height) // 2
        image_to_resize = image.crop((0, top, width, top + crop_height))
    else:
        if width > height:
            target_w = MAX_DIM
            target_h = int(round(target_w / aspect_ratio))
        else:
            target_h = MAX_DIM
            target_w = int(round(target_h * aspect_ratio))

    final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
    final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
    final_w = max(MIN_DIM, min(MAX_DIM, final_w))
    final_h = max(MIN_DIM, min(MAX_DIM, final_h))
    return image_to_resize.resize((final_w, final_h), Image.LANCZOS)


def resize_and_crop_to_match(target_image, reference_image):
    ref_width, ref_height = reference_image.size
    target_width, target_height = target_image.size
    scale = max(ref_width / target_width, ref_height / target_height)
    new_width, new_height = int(target_width * scale), int(target_height * scale)
    resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
    left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
    return resized.crop((left, top, left + ref_width, top + ref_height))


def get_num_frames(duration_seconds: float):
    return 1 + int(np.clip(
        int(round(duration_seconds * FIXED_FPS)),
        MIN_FRAMES_MODEL,
        MAX_FRAMES_MODEL,
    ))


def get_inference_duration(
    resized_image,
    processed_last_image,
    prompt,
    steps,
    negative_prompt,
    num_frames,
    guidance_scale,
    guidance_scale_2,
    current_seed,
    scheduler_name,
    flow_shift,
    frame_multiplier,
    quality,
    duration_seconds,
    progress
):
    BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
    BASE_STEP_DURATION = 15
    width, height = resized_image.size
    factor = num_frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
    step_duration = BASE_STEP_DURATION * factor ** 1.5
    gen_time = int(steps) * step_duration
    print(gen_time)
    if guidance_scale > 1:
        gen_time = gen_time * 1.8

    frame_factor = frame_multiplier // FIXED_FPS
    if frame_factor > 1:
        total_out_frames = (num_frames * frame_factor) - num_frames
        inter_time = (total_out_frames * 0.02)
        print(inter_time)
        gen_time += inter_time

    print("Time GPU", gen_time + 10)
    return 10 + gen_time


@spaces.GPU(duration=get_inference_duration)
def run_inference(
    resized_image,
    processed_last_image,
    prompt,
    steps,
    negative_prompt,
    num_frames,
    guidance_scale,
    guidance_scale_2,
    current_seed,
    scheduler_name,
    flow_shift,
    frame_multiplier,
    quality,
    duration_seconds,
    progress=gr.Progress(track_tqdm=True),
):
    scheduler_class = SCHEDULER_MAP.get(scheduler_name)
    if scheduler_class.__name__ != pipe.scheduler.config._class_name or flow_shift != pipe.scheduler.config.get("flow_shift", "shift"):
        config = copy.deepcopy(original_scheduler.config)
        if scheduler_class == FlowMatchEulerDiscreteScheduler:
            config['shift'] = flow_shift
        else:
            config['flow_shift'] = flow_shift
        pipe.scheduler = scheduler_class.from_config(config)

    clear_vram()

    task_name = str(uuid.uuid4())[:8]
    print(f"Generating {num_frames} frames, task: {task_name}, {duration_seconds}, {resized_image.size}")
    start = time.time()
    result = pipe(
        image=resized_image,
        last_image=processed_last_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=resized_image.height,
        width=resized_image.width,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=int(steps),
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
        output_type="np" 
    )
    print("gen time passed:", time.time() - start)
    
    raw_frames_np = result.frames[0]  # Returns (T, H, W, C) float32
    pipe.scheduler = original_scheduler

    frame_factor = frame_multiplier // FIXED_FPS
    if frame_factor > 1:
        start = time.time()
        print(f"Processing frames (RIFE Multiplier: {frame_factor}x)...")
        rife_model.device()
        rife_model.flownet = rife_model.flownet.half()
        final_frames = interpolate_bits(raw_frames_np, multiplier=int(frame_factor))
        print("Interpolation time passed:", time.time() - start)
    else:
        final_frames = list(raw_frames_np)

    final_fps = FIXED_FPS * int(frame_factor)

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    start = time.time()
    with tqdm(total=3, desc="Rendering Media", unit="clip") as pbar:
        pbar.update(2)
        export_to_video(final_frames, video_path, fps=final_fps, quality=quality)
        pbar.update(1)
    print(f"Export time passed, {final_fps} FPS:", time.time() - start)

    return video_path, task_name


def generate_video(
    input_image,
    last_image,
    prompt,
    steps=4,
    negative_prompt=default_negative_prompt,
    duration_seconds=MAX_DURATION,
    guidance_scale=1,
    guidance_scale_2=1,
    seed=42,
    randomize_seed=False,
    quality=5,
    scheduler="UniPCMultistep",
    flow_shift=6.0,
    frame_multiplier=16,
    video_component=True,
    progress=gr.Progress(track_tqdm=True),
):
    """
    Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA.
    This function takes an input image and generates a video animation based on the provided
    prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA
    for fast generation in 4-8 steps.
    Args:
        input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
        last_image (PIL.Image, optional): The optional last image for the video.
        prompt (str): Text prompt describing the desired animation or motion.
        steps (int, optional): Number of inference steps. More steps = higher quality but slower.
            Defaults to 4. Range: 1-30.
        negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
            Defaults to default_negative_prompt (contains unwanted visual artifacts).
        duration_seconds (float, optional): Duration of the generated video in seconds.
            Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
        guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        seed (int, optional): Random seed for reproducible results. Defaults to 42.
            Range: 0 to MAX_SEED (2147483647).
        randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
            Defaults to False.
        quality (float, optional): Video output quality. Default is 5. Uses variable bit rate.
            Highest quality is 10, lowest is 1.
        scheduler (str, optional): The name of the scheduler to use for inference. Defaults to "UniPCMultistep".
        flow_shift (float, optional): The flow shift value for compatible schedulers. Defaults to 6.0.
        frame_multiplier (int, optional): The int value for fps enhancer
        video_component(bool, optional): Show video player in output.
            Defaults to True.
        progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
    Returns:
        tuple: A tuple containing:
            - video_path (str): Path for the video component.
            - video_path (str): Path for the file download component. Attempt to avoid reconversion in video component.
            - current_seed (int): The seed used for generation.
    Raises:
        gr.Error: If input_image is None (no image uploaded).
    Note:
        - Frame count is calculated as duration_seconds * FIXED_FPS (24)
        - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
        - The function uses GPU acceleration via the @spaces.GPU decorator
        - Generation time varies based on steps and duration (see get_duration function)
    """
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    num_frames = get_num_frames(duration_seconds)
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = resize_image(input_image)

    processed_last_image = None
    if last_image:
        processed_last_image = resize_and_crop_to_match(last_image, resized_image)

    video_path, task_n = run_inference(
        resized_image,
        processed_last_image,
        prompt,
        steps,
        negative_prompt,
        num_frames,
        guidance_scale,
        guidance_scale_2,
        current_seed,
        scheduler,
        flow_shift,
        frame_multiplier,
        quality,
        duration_seconds,
        progress,
    )
    print(f"GPU complete: {task_n}")

    return (video_path if video_component else None), video_path, current_seed


CSS = """
#hidden-timestamp {
    opacity: 0;
    height: 0px;
    width: 0px;
    margin: 0px;
    padding: 0px;
    overflow: hidden;
    position: absolute;
    pointer-events: none;
}
"""


with gr.Blocks(delete_cache=(3600, 10800)) as demo:
    gr.Markdown("## WAMU - Wan 2.2 I2V (14B) 🐢")
    gr.Markdown("#### ℹ️ **A Note on Performance:** This version prioritizes a straightforward setup over maximum speed, so performance may vary.")
    gr.Markdown("Run Wan 2.2 in just 4-8 steps, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU")

    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"])
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
            frame_multi = gr.Dropdown(
                choices=[FIXED_FPS, FIXED_FPS*2, FIXED_FPS*4, FIXED_FPS*8],
                value=FIXED_FPS,
                label="Video Fluidity (Frames per Second)",
                info="Extra frames will be generated using flow estimation, which estimates motion between frames to make the video smoother."
            )
            with gr.Accordion("Advanced Settings", open=False):
                last_image_component = gr.Image(type="pil", label="Last Image (Optional)", sources=["upload", "clipboard"])
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, info="Used if any Guidance Scale > 1.", lines=3)
                quality_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Video Quality", info="If set to 10, the generated video may be too large and won't play in the Gradio preview.")
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage", info="Values above 1 increase GPU usage and may take longer to process.")
                guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")
                scheduler_dropdown = gr.Dropdown(
                    label="Scheduler",
                    choices=list(SCHEDULER_MAP.keys()),
                    value="UniPCMultistep",
                    info="Select a custom scheduler."
                )
                flow_shift_slider = gr.Slider(minimum=0.5, maximum=15.0, step=0.1, value=3.0, label="Flow Shift")
                play_result_video = gr.Checkbox(label="Display result", value=True, interactive=True)
                org_name = "TestOrganizationPleaseIgnore"
                gr.Markdown(f"[ZeroGPU help, tips and troubleshooting](https://huggingface.co/datasets/{org_name}/help/blob/main/gpu_help.md)")

            generate_button = gr.Button("Generate Video", variant="primary")

        with gr.Column():
            # ASSIGNED elem_id="generated-video" so JS can find it
            video_output = gr.Video(label="Generated Video", autoplay=True, sources=["upload"], buttons=["download", "share"], interactive=True, elem_id="generated-video")
            
            # --- Frame Grabbing UI ---
            with gr.Row():
                grab_frame_btn = gr.Button("📸 Use Current Frame as Input", variant="secondary")
                timestamp_box = gr.Number(value=0, label="Timestamp", visible=True, elem_id="hidden-timestamp")
            # -------------------------
            
            file_output = gr.File(label="Download Video")

    ui_inputs = [
        input_image_component, last_image_component, prompt_input, steps_slider,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox,
        quality_slider, scheduler_dropdown, flow_shift_slider, frame_multi,
        play_result_video
    ]
    
    generate_button.click(
        fn=generate_video, 
        inputs=ui_inputs, 
        outputs=[video_output, file_output, seed_input]
    )
    
    # --- Frame Grabbing Events ---
    # 1. Click button -> JS runs -> puts time in hidden number box
    grab_frame_btn.click(
        fn=None,
        inputs=None,
        outputs=[timestamp_box],
        js=get_timestamp_js
    )
    
    # 2. Hidden number box changes -> Python runs -> puts frame in Input Image
    timestamp_box.change(
        fn=extract_frame,
        inputs=[video_output, timestamp_box],
        outputs=[input_image_component]
    )

if __name__ == "__main__":
    demo.queue().launch(
        mcp_server=True,
        css=CSS,
        show_error=True,
    )