Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,759 Bytes
3f29218 dc155d4 3f29218 dc155d4 3f29218 84712e3 6ab11e0 40f3527 e75a609 3f29218 dc155d4 3f29218 67e379c 3f29218 67e379c 3f29218 d3934d7 3f29218 a7b0a4c 3f29218 330958f 6ab11e0 330958f 6ab11e0 3f29218 6ab11e0 3f29218 6ab11e0 3f29218 40f3527 3f29218 40f3527 3f29218 40f3527 3f29218 6ab11e0 3f29218 ab273c0 76bc6e5 3f29218 ab273c0 bd1db85 dc155d4 1f4a684 dc155d4 a3f2efe dc155d4 e1fdb35 76bc6e5 67e379c 1513fb8 0aa57df dc155d4 3bab44d 67e379c bfcaeb4 e75a609 bd1db85 e75a609 dc155d4 6ab11e0 dc155d4 1513fb8 76bc6e5 bd1db85 3f29218 bd1db85 1513fb8 bd1db85 76bc6e5 3f29218 bd1db85 3f29218 bd1db85 dc155d4 1513fb8 e75a609 1513fb8 dc155d4 4887278 dc155d4 1513fb8 dc155d4 6fc9eeb 1513fb8 67e379c 3f29218 67e379c dc155d4 e75a609 1513fb8 e75a609 3f29218 6ab11e0 3f29218 40f3527 13df71f 3f29218 dc155d4 1513fb8 67e379c 3f29218 1513fb8 67e379c d409ae5 67e379c 6ab11e0 3f29218 67e379c 1513fb8 3f29218 6ab11e0 67e379c 3a9a5d3 40f3527 330958f 40f3527 1931223 40f3527 330958f 3f29218 40f3527 3f29218 40f3527 330958f 6ab11e0 1513fb8 dc155d4 1513fb8 dc155d4 1513fb8 dc155d4 1513fb8 e1fdb35 67e379c 40f3527 330958f dc155d4 a25b815 dc155d4 76bc6e5 a25b815 dc155d4 1513fb8 dc155d4 a87b08e 1513fb8 dc155d4 76bc6e5 dc155d4 76bc6e5 dc155d4 e1fdb35 732e39d 67e379c 3f29218 330958f dc155d4 54f2e32 dc155d4 76bc6e5 dc155d4 3f29218 dc155d4 1513fb8 e75a609 dc155d4 76bc6e5 dc155d4 1513fb8 6ab11e0 1513fb8 67e379c 3f29218 1513fb8 6ab11e0 dc155d4 330958f dc155d4 1513fb8 bfcaeb4 40f3527 330958f 6ab11e0 3f29218 dc155d4 6ab11e0 dc155d4 df5cdbb 3f29218 40f3527 3f29218 dc155d4 40f3527 df5cdbb 330958f dc155d4 40f3527 330958f 6ab11e0 67e379c 5766468 67e379c 330958f 6ab11e0 40f3527 dc155d4 3f29218 dc155d4 330958f 6ab11e0 330958f 54f2e32 1513fb8 dc155d4 1513fb8 dc155d4 e1fdb35 330958f dc155d4 3f29218 330958f dc155d4 330958f 40f3527 330958f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import os
import spaces
import shutil
import subprocess
import sys
import copy
import random
import tempfile
import warnings
import time
import gc
import uuid
from tqdm import tqdm
import cv2
import numpy as np
import torch
from torch.nn import functional as F
from PIL import Image
import gradio as gr
from diffusers import (
FlowMatchEulerDiscreteScheduler,
SASolverScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
UniPCMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
)
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.utils.export_utils import export_to_video
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
import aoti
os.environ["TOKENIZERS_PARALLELISM"] = "true"
warnings.filterwarnings("ignore")
IS_ZERO_GPU = bool(os.getenv("SPACES_ZERO_GPU"))
if IS_ZERO_GPU:
print("Loading...")
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
# --- FRAME EXTRACTION JS & LOGIC ---
# JS to grab timestamp from the output video
get_timestamp_js = """
function() {
// Select the video element specifically inside the component with id 'generated-video'
const video = document.querySelector('#generated-video video');
if (video) {
console.log("Video found! Time: " + video.currentTime);
return video.currentTime;
} else {
console.log("No video element found.");
return 0;
}
}
"""
def extract_frame(video_path, timestamp):
# Safety check: if no video is present
if not video_path:
return None
print(f"Extracting frame at timestamp: {timestamp}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None
# Calculate frame number
fps = cap.get(cv2.CAP_PROP_FPS)
target_frame_num = int(float(timestamp) * fps)
# Cap total frames to prevent errors at the very end of video
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if target_frame_num >= total_frames:
target_frame_num = total_frames - 1
# Set position
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame_num)
ret, frame = cap.read()
cap.release()
if ret:
# Convert from BGR (OpenCV) to RGB (Gradio)
# Gradio Image component handles Numpy array -> PIL conversion automatically
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return None
# --- END FRAME EXTRACTION LOGIC ---
def clear_vram():
gc.collect()
torch.cuda.empty_cache()
# RIFE
if not os.path.exists("RIFEv4.26_0921.zip"):
print("Downloading RIFE Model...")
subprocess.run([
"wget", "-q",
"https://huggingface.co/r3gm/RIFE/resolve/main/RIFEv4.26_0921.zip",
"-O", "RIFEv4.26_0921.zip"
], check=True)
subprocess.run(["unzip", "-o", "RIFEv4.26_0921.zip"], check=True)
# sys.path.append(os.getcwd())
from train_log.RIFE_HDv3 import Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
rife_model = Model()
rife_model.load_model("train_log", -1)
rife_model.eval()
@torch.no_grad()
def interpolate_bits(frames_np, multiplier=2, scale=1.0):
"""
Interpolation maintaining Numpy Float 0-1 format.
Args:
frames_np: Numpy Array (Time, Height, Width, Channels) - Float32 [0.0, 1.0]
multiplier: int (2, 4, 8)
Returns:
List of Numpy Arrays (Height, Width, Channels) - Float32 [0.0, 1.0]
"""
# Handle input shape
if isinstance(frames_np, list):
# Convert list of arrays to one big array for easier shape handling if needed,
# but here we just grab dims from first frame
T = len(frames_np)
H, W, C = frames_np[0].shape
else:
T, H, W, C = frames_np.shape
# 1. No Interpolation Case
if multiplier < 2:
# Just convert 4D array to list of 3D arrays
if isinstance(frames_np, np.ndarray):
return list(frames_np)
return frames_np
n_interp = multiplier - 1
# Pre-calc padding for RIFE (requires dimensions divisible by 32/scale)
tmp = max(128, int(128 / scale))
ph = ((H - 1) // tmp + 1) * tmp
pw = ((W - 1) // tmp + 1) * tmp
padding = (0, pw - W, 0, ph - H)
# Helper: Numpy (H, W, C) Float -> Tensor (1, C, H, W) Half
def to_tensor(frame_np):
# frame_np is float32 0-1
t = torch.from_numpy(frame_np).to(device)
# HWC -> CHW
t = t.permute(2, 0, 1).unsqueeze(0)
return F.pad(t, padding).half()
# Helper: Tensor (1, C, H, W) Half -> Numpy (H, W, C) Float
def from_tensor(tensor):
# Crop padding
t = tensor[0, :, :H, :W]
# CHW -> HWC
t = t.permute(1, 2, 0)
# Keep as float32, range 0-1
return t.float().cpu().numpy()
def make_inference(I0, I1, n):
if rife_model.version >= 3.9:
res = []
for i in range(n):
res.append(rife_model.inference(I0, I1, (i+1) * 1. / (n+1), scale))
return res
else:
middle = rife_model.inference(I0, I1, scale)
if n == 1:
return [middle]
first_half = make_inference(I0, middle, n=n//2)
second_half = make_inference(middle, I1, n=n//2)
if n % 2:
return [*first_half, middle, *second_half]
else:
return [*first_half, *second_half]
output_frames = []
# Process Frames
# Load first frame into GPU
I1 = to_tensor(frames_np[0])
total_steps = T - 1
with tqdm(total=total_steps, desc="Interpolating", unit="frame") as pbar:
for i in range(total_steps):
I0 = I1
# Add original frame to output
output_frames.append(from_tensor(I0))
# Load next frame
I1 = to_tensor(frames_np[i+1])
# Generate intermediate frames
mid_tensors = make_inference(I0, I1, n_interp)
# Append intermediate frames
for mid in mid_tensors:
output_frames.append(from_tensor(mid))
if (i + 1) % 50 == 0:
pbar.update(50)
pbar.update(total_steps % 50)
# Add the very last frame
output_frames.append(from_tensor(I1))
# Cleanup
del I0, I1, mid_tensors
torch.cuda.empty_cache()
return output_frames
# WAN
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
CACHE_DIR = os.path.expanduser("~/.cache/huggingface/")
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 160
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
SCHEDULER_MAP = {
"FlowMatchEulerDiscrete": FlowMatchEulerDiscreteScheduler,
"SASolver": SASolverScheduler,
"DEISMultistep": DEISMultistepScheduler,
"DPMSolverMultistepInverse": DPMSolverMultistepInverseScheduler,
"UniPCMultistep": UniPCMultistepScheduler,
"DPMSolverMultistep": DPMSolverMultistepScheduler,
"DPMSolverSinglestep": DPMSolverSinglestepScheduler,
}
pipe = WanImageToVideoPipeline.from_pretrained(
"TestOrganizationPleaseIgnore/WAMU_v1_WAN2.2_I2V_LIGHTNING",
torch_dtype=torch.bfloat16,
).to('cuda')
original_scheduler = copy.deepcopy(pipe.scheduler)
if os.path.exists(CACHE_DIR):
shutil.rmtree(CACHE_DIR)
print("Deleted Hugging Face cache.")
else:
print("No hub cache found.")
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
# pipe.vae.enable_slicing()
# pipe.vae.enable_tiling()
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
def resize_image(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect_ratio = width / height
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
image_to_resize = image
if aspect_ratio > MAX_ASPECT_RATIO:
target_w, target_h = MAX_DIM, MIN_DIM
crop_width = int(round(height * MAX_ASPECT_RATIO))
left = (width - crop_width) // 2
image_to_resize = image.crop((left, 0, left + crop_width, height))
elif aspect_ratio < MIN_ASPECT_RATIO:
target_w, target_h = MIN_DIM, MAX_DIM
crop_height = int(round(width / MIN_ASPECT_RATIO))
top = (height - crop_height) // 2
image_to_resize = image.crop((0, top, width, top + crop_height))
else:
if width > height:
target_w = MAX_DIM
target_h = int(round(target_w / aspect_ratio))
else:
target_h = MAX_DIM
target_w = int(round(target_h * aspect_ratio))
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
def resize_and_crop_to_match(target_image, reference_image):
ref_width, ref_height = reference_image.size
target_width, target_height = target_image.size
scale = max(ref_width / target_width, ref_height / target_height)
new_width, new_height = int(target_width * scale), int(target_height * scale)
resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
return resized.crop((left, top, left + ref_width, top + ref_height))
def get_num_frames(duration_seconds: float):
return 1 + int(np.clip(
int(round(duration_seconds * FIXED_FPS)),
MIN_FRAMES_MODEL,
MAX_FRAMES_MODEL,
))
def get_inference_duration(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler_name,
flow_shift,
frame_multiplier,
quality,
duration_seconds,
progress
):
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
BASE_STEP_DURATION = 15
width, height = resized_image.size
factor = num_frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
step_duration = BASE_STEP_DURATION * factor ** 1.5
gen_time = int(steps) * step_duration
print(gen_time)
if guidance_scale > 1:
gen_time = gen_time * 1.8
frame_factor = frame_multiplier // FIXED_FPS
if frame_factor > 1:
total_out_frames = (num_frames * frame_factor) - num_frames
inter_time = (total_out_frames * 0.02)
print(inter_time)
gen_time += inter_time
print("Time GPU", gen_time + 10)
return 10 + gen_time
@spaces.GPU(duration=get_inference_duration)
def run_inference(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler_name,
flow_shift,
frame_multiplier,
quality,
duration_seconds,
progress=gr.Progress(track_tqdm=True),
):
scheduler_class = SCHEDULER_MAP.get(scheduler_name)
if scheduler_class.__name__ != pipe.scheduler.config._class_name or flow_shift != pipe.scheduler.config.get("flow_shift", "shift"):
config = copy.deepcopy(original_scheduler.config)
if scheduler_class == FlowMatchEulerDiscreteScheduler:
config['shift'] = flow_shift
else:
config['flow_shift'] = flow_shift
pipe.scheduler = scheduler_class.from_config(config)
clear_vram()
task_name = str(uuid.uuid4())[:8]
print(f"Generating {num_frames} frames, task: {task_name}, {duration_seconds}, {resized_image.size}")
start = time.time()
result = pipe(
image=resized_image,
last_image=processed_last_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
output_type="np"
)
print("gen time passed:", time.time() - start)
raw_frames_np = result.frames[0] # Returns (T, H, W, C) float32
pipe.scheduler = original_scheduler
frame_factor = frame_multiplier // FIXED_FPS
if frame_factor > 1:
start = time.time()
print(f"Processing frames (RIFE Multiplier: {frame_factor}x)...")
rife_model.device()
rife_model.flownet = rife_model.flownet.half()
final_frames = interpolate_bits(raw_frames_np, multiplier=int(frame_factor))
print("Interpolation time passed:", time.time() - start)
else:
final_frames = list(raw_frames_np)
final_fps = FIXED_FPS * int(frame_factor)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
start = time.time()
with tqdm(total=3, desc="Rendering Media", unit="clip") as pbar:
pbar.update(2)
export_to_video(final_frames, video_path, fps=final_fps, quality=quality)
pbar.update(1)
print(f"Export time passed, {final_fps} FPS:", time.time() - start)
return video_path, task_name
def generate_video(
input_image,
last_image,
prompt,
steps=4,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
quality=5,
scheduler="UniPCMultistep",
flow_shift=6.0,
frame_multiplier=16,
video_component=True,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA.
This function takes an input image and generates a video animation based on the provided
prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA
for fast generation in 4-8 steps.
Args:
input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
last_image (PIL.Image, optional): The optional last image for the video.
prompt (str): Text prompt describing the desired animation or motion.
steps (int, optional): Number of inference steps. More steps = higher quality but slower.
Defaults to 4. Range: 1-30.
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
Defaults to default_negative_prompt (contains unwanted visual artifacts).
duration_seconds (float, optional): Duration of the generated video in seconds.
Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
seed (int, optional): Random seed for reproducible results. Defaults to 42.
Range: 0 to MAX_SEED (2147483647).
randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
Defaults to False.
quality (float, optional): Video output quality. Default is 5. Uses variable bit rate.
Highest quality is 10, lowest is 1.
scheduler (str, optional): The name of the scheduler to use for inference. Defaults to "UniPCMultistep".
flow_shift (float, optional): The flow shift value for compatible schedulers. Defaults to 6.0.
frame_multiplier (int, optional): The int value for fps enhancer
video_component(bool, optional): Show video player in output.
Defaults to True.
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
Returns:
tuple: A tuple containing:
- video_path (str): Path for the video component.
- video_path (str): Path for the file download component. Attempt to avoid reconversion in video component.
- current_seed (int): The seed used for generation.
Raises:
gr.Error: If input_image is None (no image uploaded).
Note:
- Frame count is calculated as duration_seconds * FIXED_FPS (24)
- Output dimensions are adjusted to be multiples of MOD_VALUE (32)
- The function uses GPU acceleration via the @spaces.GPU decorator
- Generation time varies based on steps and duration (see get_duration function)
"""
if input_image is None:
raise gr.Error("Please upload an input image.")
num_frames = get_num_frames(duration_seconds)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
processed_last_image = None
if last_image:
processed_last_image = resize_and_crop_to_match(last_image, resized_image)
video_path, task_n = run_inference(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler,
flow_shift,
frame_multiplier,
quality,
duration_seconds,
progress,
)
print(f"GPU complete: {task_n}")
return (video_path if video_component else None), video_path, current_seed
CSS = """
#hidden-timestamp {
opacity: 0;
height: 0px;
width: 0px;
margin: 0px;
padding: 0px;
overflow: hidden;
position: absolute;
pointer-events: none;
}
"""
with gr.Blocks(delete_cache=(3600, 10800)) as demo:
gr.Markdown("## WAMU - Wan 2.2 I2V (14B) 🐢")
gr.Markdown("#### ℹ️ **A Note on Performance:** This version prioritizes a straightforward setup over maximum speed, so performance may vary.")
gr.Markdown("Run Wan 2.2 in just 4-8 steps, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"])
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
frame_multi = gr.Dropdown(
choices=[FIXED_FPS, FIXED_FPS*2, FIXED_FPS*4, FIXED_FPS*8],
value=FIXED_FPS,
label="Video Fluidity (Frames per Second)",
info="Extra frames will be generated using flow estimation, which estimates motion between frames to make the video smoother."
)
with gr.Accordion("Advanced Settings", open=False):
last_image_component = gr.Image(type="pil", label="Last Image (Optional)", sources=["upload", "clipboard"])
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, info="Used if any Guidance Scale > 1.", lines=3)
quality_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Video Quality", info="If set to 10, the generated video may be too large and won't play in the Gradio preview.")
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage", info="Values above 1 increase GPU usage and may take longer to process.")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")
scheduler_dropdown = gr.Dropdown(
label="Scheduler",
choices=list(SCHEDULER_MAP.keys()),
value="UniPCMultistep",
info="Select a custom scheduler."
)
flow_shift_slider = gr.Slider(minimum=0.5, maximum=15.0, step=0.1, value=3.0, label="Flow Shift")
play_result_video = gr.Checkbox(label="Display result", value=True, interactive=True)
org_name = "TestOrganizationPleaseIgnore"
gr.Markdown(f"[ZeroGPU help, tips and troubleshooting](https://huggingface.co/datasets/{org_name}/help/blob/main/gpu_help.md)")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
# ASSIGNED elem_id="generated-video" so JS can find it
video_output = gr.Video(label="Generated Video", autoplay=True, sources=["upload"], buttons=["download", "share"], interactive=True, elem_id="generated-video")
# --- Frame Grabbing UI ---
with gr.Row():
grab_frame_btn = gr.Button("📸 Use Current Frame as Input", variant="secondary")
timestamp_box = gr.Number(value=0, label="Timestamp", visible=True, elem_id="hidden-timestamp")
# -------------------------
file_output = gr.File(label="Download Video")
ui_inputs = [
input_image_component, last_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox,
quality_slider, scheduler_dropdown, flow_shift_slider, frame_multi,
play_result_video
]
generate_button.click(
fn=generate_video,
inputs=ui_inputs,
outputs=[video_output, file_output, seed_input]
)
# --- Frame Grabbing Events ---
# 1. Click button -> JS runs -> puts time in hidden number box
grab_frame_btn.click(
fn=None,
inputs=None,
outputs=[timestamp_box],
js=get_timestamp_js
)
# 2. Hidden number box changes -> Python runs -> puts frame in Input Image
timestamp_box.change(
fn=extract_frame,
inputs=[video_output, timestamp_box],
outputs=[input_image_component]
)
if __name__ == "__main__":
demo.queue().launch(
mcp_server=True,
css=CSS,
show_error=True,
) |