Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,583 +1,724 @@
|
|
| 1 |
-
|
| 2 |
-
# All code combined into a single file for convenience.
|
| 3 |
-
|
| 4 |
-
# --- Imports ---
|
| 5 |
-
import spaces
|
| 6 |
-
import json
|
| 7 |
-
import math
|
| 8 |
import os
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
import
|
| 13 |
-
import base64
|
| 14 |
-
import copy
|
| 15 |
-
from dataclasses import dataclass
|
| 16 |
-
#import flash_attn_2_cuda as flash_attn_gpu
|
| 17 |
-
|
| 18 |
-
# Vision and ML Libraries
|
| 19 |
-
import fitz # PyMuPDF
|
| 20 |
import gradio as gr
|
| 21 |
-
import
|
|
|
|
| 22 |
import torch
|
| 23 |
-
#import subprocess
|
| 24 |
-
from huggingface_hub import snapshot_download
|
| 25 |
from PIL import Image, ImageDraw, ImageFont
|
| 26 |
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
|
|
|
|
| 27 |
from qwen_vl_utils import process_vision_info
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
MIN_PIXELS = 3136
|
| 40 |
MAX_PIXELS = 11289600
|
| 41 |
IMAGE_FACTOR = 28
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
| 43 |
1. Bbox format: [x1, y1, x2, y2]
|
|
|
|
| 44 |
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
|
|
|
| 45 |
3. Text Extraction & Formatting Rules:
|
| 46 |
- Picture: For the 'Picture' category, the text field should be omitted.
|
| 47 |
- Formula: Format its text as LaTeX.
|
| 48 |
- Table: Format its text as HTML.
|
| 49 |
- All Others (Text, Title, etc.): Format their text as Markdown.
|
|
|
|
| 50 |
4. Constraints:
|
| 51 |
- The output text must be the original text from the image, with no translation.
|
| 52 |
- All layout elements must be sorted according to human reading order.
|
|
|
|
| 53 |
5. Final Output: The entire output must be a single JSON object.
|
| 54 |
"""
|
| 55 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 56 |
-
PDF_CACHE = {
|
| 57 |
-
"images": [],
|
| 58 |
-
"current_page": 0,
|
| 59 |
-
"total_pages": 0,
|
| 60 |
-
"file_type": None,
|
| 61 |
-
"is_parsed": False,
|
| 62 |
-
"results": [],
|
| 63 |
-
"model_used": None,
|
| 64 |
-
}
|
| 65 |
-
MODELS = {}
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
def
|
| 74 |
-
"""
|
|
|
|
| 75 |
try:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
-
print(f"
|
| 82 |
-
return
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
"""
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
else:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
| 106 |
else:
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
current_pos, processed_parts = 0, []
|
| 135 |
-
while current_pos < len(result):
|
| 136 |
-
start_pos = result.find(start_delim, current_pos)
|
| 137 |
-
if start_pos == -1:
|
| 138 |
-
processed_parts.append(result[current_pos:])
|
| 139 |
-
break
|
| 140 |
-
processed_parts.append(result[current_pos:start_pos])
|
| 141 |
-
end_pos = result.find(end_delim, start_pos + len(start_delim))
|
| 142 |
-
if end_pos == -1:
|
| 143 |
-
processed_parts.append(result[start_pos:])
|
| 144 |
-
break
|
| 145 |
-
formula_content = result[start_pos + len(start_delim):end_pos]
|
| 146 |
-
processed_formula = formula_content.replace('\n', ' \\\\ ')
|
| 147 |
-
processed_parts.append(f"{start_delim}{processed_formula}{end_delim}")
|
| 148 |
-
current_pos = end_pos + len(end_delim)
|
| 149 |
-
result = ''.join(processed_parts)
|
| 150 |
-
return result
|
| 151 |
-
except Exception as e:
|
| 152 |
-
print(f"_process_formulas_in_text error: {str(e)}")
|
| 153 |
-
return text
|
| 154 |
-
|
| 155 |
-
def _remove_newline_in_heading(self, text: str) -> str:
|
| 156 |
-
try:
|
| 157 |
-
def is_chinese(char): return '\u4e00' <= char <= '\u9fff'
|
| 158 |
-
return text.replace('\n', '') if any(is_chinese(char) for char in text) else text.replace('\n', ' ')
|
| 159 |
-
except Exception as e:
|
| 160 |
-
print(f"_remove_newline_in_heading error: {str(e)}")
|
| 161 |
-
return text
|
| 162 |
-
|
| 163 |
-
def _handle_heading(self, text: str, label: str) -> str:
|
| 164 |
-
try:
|
| 165 |
-
level = self.heading_levels.get(label, '#')
|
| 166 |
-
text = self._remove_newline_in_heading(text.strip())
|
| 167 |
-
text = self._handle_text(text)
|
| 168 |
-
return f"{level} {text}\n\n"
|
| 169 |
-
except Exception as e:
|
| 170 |
-
print(f"_handle_heading error: {str(e)}")
|
| 171 |
-
return f"# Error processing heading: {text}\n\n"
|
| 172 |
-
|
| 173 |
-
def _handle_list_item(self, text: str) -> str:
|
| 174 |
-
try:
|
| 175 |
-
return f"- {text.strip()}\n"
|
| 176 |
-
except Exception as e:
|
| 177 |
-
print(f"_handle_list_item error: {str(e)}")
|
| 178 |
-
return f"- Error processing list item: {text}\n"
|
| 179 |
-
|
| 180 |
-
def _handle_figure(self, text: str, section_count: int) -> str:
|
| 181 |
-
try:
|
| 182 |
-
if not text.strip():
|
| 183 |
-
return f"\n\n"
|
| 184 |
-
if text.startswith("data:image/"):
|
| 185 |
-
return f"\n\n"
|
| 186 |
-
else:
|
| 187 |
-
return f"\n\n"
|
| 188 |
-
except Exception as e:
|
| 189 |
-
print(f"_handle_figure error: {str(e)}")
|
| 190 |
-
return f"*[Error processing figure: {str(e)}]*\n\n"
|
| 191 |
-
|
| 192 |
-
def _handle_table(self, text: str) -> str:
|
| 193 |
-
try:
|
| 194 |
-
if '<table' in text.lower() or '<tr' in text.lower():
|
| 195 |
-
return extract_table_from_html(text) + "\n\n"
|
| 196 |
-
else:
|
| 197 |
-
table_lines = text.split('\n')
|
| 198 |
-
if not table_lines: return "\n\n"
|
| 199 |
-
col_count = len(table_lines[0].split()) if table_lines[0] else 1
|
| 200 |
-
header = '| ' + ' | '.join(table_lines[0].split()) + ' |'
|
| 201 |
-
separator = '| ' + ' | '.join(['---'] * col_count) + ' |'
|
| 202 |
-
rows = [f"| {' | '.join(line.split())} |" for line in table_lines[1:]]
|
| 203 |
-
return '\n'.join([header, separator] + rows) + '\n\n'
|
| 204 |
-
except Exception as e:
|
| 205 |
-
print(f"_handle_table error: {str(e)}")
|
| 206 |
-
return f"*[Error processing table: {str(e)}]*\n\n"
|
| 207 |
-
|
| 208 |
-
def _handle_algorithm(self, text: str) -> str:
|
| 209 |
-
try:
|
| 210 |
-
text = re.sub(r'\\begin\{algorithm\}(.*?)\\end\{algorithm\}', r'\1', text, flags=re.DOTALL)
|
| 211 |
-
text = text.replace('\\begin{algorithmic}', '').replace('\\end{algorithmic}', '')
|
| 212 |
-
caption_match = re.search(r'\\caption\{(.*?)\}', text)
|
| 213 |
-
caption = f"**{caption_match.group(1)}**\n\n" if caption_match else ""
|
| 214 |
-
algorithm_text = re.sub(r'\\caption\{.*?\}', '', text).strip()
|
| 215 |
-
return f"{caption}```\n{algorithm_text}\n```\n\n"
|
| 216 |
-
except Exception as e:
|
| 217 |
-
print(f"_handle_algorithm error: {str(e)}")
|
| 218 |
-
return f"*[Error processing algorithm: {str(e)}]*\n\n{text}\n\n"
|
| 219 |
-
|
| 220 |
-
def _handle_formula(self, text: str) -> str:
|
| 221 |
-
try:
|
| 222 |
-
processed_text = self._process_formulas_in_text(text)
|
| 223 |
-
if '$$' not in processed_text and '\\[' not in processed_text:
|
| 224 |
-
processed_text = f'$${processed_text}$$'
|
| 225 |
-
return f"{processed_text}\n\n"
|
| 226 |
-
except Exception as e:
|
| 227 |
-
print(f"_handle_formula error: {str(e)}")
|
| 228 |
-
return f"*[Error processing formula: {str(e)}]*\n\n"
|
| 229 |
-
|
| 230 |
-
def convert(self, recognition_results: List[Dict[str, Any]]) -> str:
|
| 231 |
-
markdown_content = []
|
| 232 |
-
for i, result in enumerate(recognition_results):
|
| 233 |
-
try:
|
| 234 |
-
label, text = result.get('label', ''), result.get('text', '').strip()
|
| 235 |
-
if label == 'fig':
|
| 236 |
-
markdown_content.append(self._handle_figure(text, i))
|
| 237 |
-
continue
|
| 238 |
-
if not text: continue
|
| 239 |
-
|
| 240 |
-
if label in {'title', 'sec', 'sub_sec'}:
|
| 241 |
-
markdown_content.append(self._handle_heading(text, label))
|
| 242 |
-
elif label == 'list':
|
| 243 |
-
markdown_content.append(self._handle_list_item(text))
|
| 244 |
-
elif label == 'tab':
|
| 245 |
-
markdown_content.append(self._handle_table(text))
|
| 246 |
-
elif label == 'alg':
|
| 247 |
-
markdown_content.append(self._handle_algorithm(text))
|
| 248 |
-
elif label == 'formula':
|
| 249 |
-
markdown_content.append(self._handle_formula(text))
|
| 250 |
-
elif label not in self.special_labels:
|
| 251 |
-
markdown_content.append(f"{self._handle_text(text)}\n\n")
|
| 252 |
-
except Exception as e:
|
| 253 |
-
print(f"Error processing item {i}: {str(e)}")
|
| 254 |
-
markdown_content.append(f"*[Error processing content]*\n\n")
|
| 255 |
-
return self._post_process(''.join(markdown_content))
|
| 256 |
-
|
| 257 |
-
def _post_process(self, md: str) -> str:
|
| 258 |
-
try:
|
| 259 |
-
md = re.sub(r'\\author\{(.*?)\}', lambda m: self._handle_text(m.group(1)), md, flags=re.DOTALL)
|
| 260 |
-
md = re.sub(r'\$(\\author\{.*?\})\$', lambda m: self._handle_text(re.search(r'\\author\{(.*?)\}', m.group(1), re.DOTALL).group(1)), md, flags=re.DOTALL)
|
| 261 |
-
md = re.sub(r'\\begin\{abstract\}(.*?)\\end\{abstract\}', r'**Abstract** \1', md, flags=re.DOTALL)
|
| 262 |
-
md = re.sub(r'\\begin\{abstract\}', r'**Abstract**', md)
|
| 263 |
-
md = re.sub(r'\\eqno\{\((.*?)\)\}', r'\\tag{\1}', md)
|
| 264 |
-
md = md.replace("\[ \\\\", "$$ \\\\").replace("\\\\ \]", "\\\\ $$")
|
| 265 |
-
md = re.sub(r'_ {', r'_{', md)
|
| 266 |
-
md = re.sub(r'^ {', r'^{', md)
|
| 267 |
-
md = re.sub(r'\n{3,}', r'\n\n', md)
|
| 268 |
-
return md
|
| 269 |
-
except Exception as e:
|
| 270 |
-
print(f"_post_process error: {str(e)}")
|
| 271 |
-
return md
|
| 272 |
-
|
| 273 |
-
# --- General Processing Utilities ---
|
| 274 |
-
@dataclass
|
| 275 |
-
class ImageDimensions:
|
| 276 |
-
original_w: int
|
| 277 |
-
original_h: int
|
| 278 |
-
padded_w: int
|
| 279 |
-
padded_h: int
|
| 280 |
-
|
| 281 |
-
def adjust_box_edges(image, boxes: List[List[float]], max_pixels=15, threshold=0.2):
|
| 282 |
-
if isinstance(image, str):
|
| 283 |
-
image = cv2.imread(image)
|
| 284 |
-
img_h, img_w = image.shape[:2]
|
| 285 |
-
new_boxes = []
|
| 286 |
-
for box in boxes:
|
| 287 |
-
best_box = copy.deepcopy(box)
|
| 288 |
-
|
| 289 |
-
def check_edge(img, current_box, i, is_vertical):
|
| 290 |
-
edge = current_box[i]
|
| 291 |
-
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 292 |
-
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
| 293 |
-
if is_vertical:
|
| 294 |
-
line = binary[current_box[1] : current_box[3] + 1, edge]
|
| 295 |
else:
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
return np.sum(transitions) / len(transitions)
|
| 299 |
-
|
| 300 |
-
edges = [(0, -1, True), (2, 1, True), (1, -1, False), (3, 1, False)]
|
| 301 |
-
current_box = copy.deepcopy(box)
|
| 302 |
-
current_box = [min(max(c, 0), d - 1) for c, d in zip(current_box, [img_w, img_h, img_w, img_h])]
|
| 303 |
-
|
| 304 |
-
for i, direction, is_vertical in edges:
|
| 305 |
-
best_score = check_edge(image, current_box, i, is_vertical)
|
| 306 |
-
if best_score <= threshold: continue
|
| 307 |
-
for _ in range(max_pixels):
|
| 308 |
-
current_box[i] += direction
|
| 309 |
-
dim = img_w if i in [0, 2] else img_h
|
| 310 |
-
current_box[i] = min(max(current_box[i], 0), dim - 1)
|
| 311 |
-
score = check_edge(image, current_box, i, is_vertical)
|
| 312 |
-
if score < best_score:
|
| 313 |
-
best_score, best_box = score, copy.deepcopy(current_box)
|
| 314 |
-
if score <= threshold: break
|
| 315 |
-
new_boxes.append(best_box)
|
| 316 |
-
return new_boxes
|
| 317 |
-
|
| 318 |
-
def parse_layout_string(bbox_str):
|
| 319 |
-
pattern = r"\[(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+)\]\s*(\w+)"
|
| 320 |
-
matches = re.finditer(pattern, bbox_str)
|
| 321 |
-
return [([float(m.group(i)) for i in range(1, 5)], m.group(5).strip()) for m in matches]
|
| 322 |
-
|
| 323 |
-
def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[int, int, int, int]:
|
| 324 |
-
try:
|
| 325 |
-
top, left = (dims.padded_h - dims.original_h) // 2, (dims.padded_w - dims.original_w) // 2
|
| 326 |
-
orig_x1, orig_y1 = max(0, x1 - left), max(0, y1 - top)
|
| 327 |
-
orig_x2, orig_y2 = min(dims.original_w, x2 - left), min(dims.original_h, y2 - top)
|
| 328 |
-
if orig_x2 <= orig_x1: orig_x2 = min(orig_x1 + 1, dims.original_w)
|
| 329 |
-
if orig_y2 <= orig_y1: orig_y2 = min(orig_y1 + 1, dims.original_h)
|
| 330 |
-
return int(orig_x1), int(orig_y1), int(orig_x2), int(orig_y2)
|
| 331 |
except Exception as e:
|
| 332 |
-
print(f"
|
| 333 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
-
|
|
|
|
|
|
|
| 336 |
try:
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
except Exception as e:
|
| 355 |
-
print(f"
|
| 356 |
-
|
| 357 |
-
return 0, 0, 100, 100, *orig_coords, [0, 0, 100, 100]
|
| 358 |
|
| 359 |
-
def
|
|
|
|
| 360 |
try:
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
print(f"prepare_image error: {str(e)}")
|
| 372 |
-
dims = ImageDimensions(image.width, image.height, image.width, image.height)
|
| 373 |
-
return np.zeros((image.height, image.width, 3), dtype=np.uint8), dims
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
# =================================================================================
|
| 377 |
-
# --- MODEL WRAPPER CLASSES ---
|
| 378 |
-
# =================================================================================
|
| 379 |
-
|
| 380 |
-
class DotOcrModel:
|
| 381 |
-
def __init__(self, device: str):
|
| 382 |
-
self.model, self.processor, self.device = None, None, device
|
| 383 |
-
self.model_id, self.model_path = "rednote-hilab/dots.ocr", "./models/dots-ocr-local"
|
| 384 |
-
|
| 385 |
-
@spaces.GPU()
|
| 386 |
-
def load_model(self):
|
| 387 |
-
if self.model is None:
|
| 388 |
-
print("Loading dot.ocr model...")
|
| 389 |
-
snapshot_download(repo_id=self.model_id, local_dir=self.model_path, local_dir_use_symlinks=False)
|
| 390 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 391 |
-
self.model_path, attn_implementation="flash_attention_2",
|
| 392 |
-
torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
|
| 393 |
-
)
|
| 394 |
-
self.processor = AutoProcessor.from_pretrained(self.model_path, trust_remote_code=True)
|
| 395 |
-
print("dot.ocr model loaded.")
|
| 396 |
-
|
| 397 |
-
@staticmethod
|
| 398 |
-
def smart_resize(height, width, factor, min_pixels, max_pixels):
|
| 399 |
-
if max(height, width) / min(height, width) > 200: raise ValueError("Aspect ratio too high")
|
| 400 |
-
h_bar, w_bar = max(factor, round(height / factor) * factor), max(factor, round(width / factor) * factor)
|
| 401 |
-
if h_bar * w_bar > max_pixels:
|
| 402 |
-
beta = math.sqrt((height * width) / max_pixels)
|
| 403 |
-
h_bar, w_bar = round(height / beta / factor) * factor, round(width / beta / factor) * factor
|
| 404 |
-
elif h_bar * w_bar < min_pixels:
|
| 405 |
-
beta = math.sqrt(min_pixels / (height * width))
|
| 406 |
-
h_bar, w_bar = round(height * beta / factor) * factor, round(width / beta / factor) * factor
|
| 407 |
-
return h_bar, w_bar
|
| 408 |
-
|
| 409 |
-
def fetch_image(self, image_input, min_pixels, max_pixels):
|
| 410 |
-
image = image_input.convert('RGB')
|
| 411 |
-
height, width = self.smart_resize(image.height, image.width, IMAGE_FACTOR, min_pixels, max_pixels)
|
| 412 |
-
return image.resize((width, height), Image.LANCZOS)
|
| 413 |
-
|
| 414 |
-
@spaces.GPU()
|
| 415 |
-
def inference(self, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
|
| 416 |
-
self.load_model()
|
| 417 |
-
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
| 418 |
-
text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 419 |
-
image_inputs, _ = process_vision_info(messages)
|
| 420 |
-
inputs = self.processor(text=[text], images=image_inputs, padding=True, return_tensors="pt").to(self.device)
|
| 421 |
-
with torch.no_grad():
|
| 422 |
-
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1)
|
| 423 |
-
generated_ids_trimmed = [out[len(ins):] for ins, out in zip(inputs.input_ids, generated_ids)]
|
| 424 |
-
return self.processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 425 |
-
|
| 426 |
-
def process_image(self, image: Image.Image, min_pixels: int, max_pixels: int):
|
| 427 |
-
resized_image = self.fetch_image(image, min_pixels, max_pixels)
|
| 428 |
-
raw_output = self.inference(resized_image, DOT_OCR_PROMPT)
|
| 429 |
-
result = {'original_image': image, 'raw_output': raw_output, 'layout_result': None}
|
| 430 |
try:
|
| 431 |
layout_data = json.loads(raw_output)
|
| 432 |
result['layout_result'] = layout_data
|
| 433 |
-
|
| 434 |
-
result['
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
|
|
|
| 439 |
return result
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
img_copy, draw = image.copy(), ImageDraw.Draw(img_copy)
|
| 443 |
-
colors = {'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1', 'List-item': '#96CEB4',
|
| 444 |
-
'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD', 'Picture': '#FFD93D', 'Section-header': '#6C5CE7',
|
| 445 |
-
'Table': '#FD79A8', 'Text': '#74B9FF', 'Title': '#E17055'}
|
| 446 |
-
try: font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 15)
|
| 447 |
-
except: font = ImageFont.load_default()
|
| 448 |
-
for item in layout_data:
|
| 449 |
-
if 'bbox' in item and 'category' in item:
|
| 450 |
-
bbox, category, color = item['bbox'], item['category'], colors.get(category, '#000000')
|
| 451 |
-
draw.rectangle(bbox, outline=color, width=3)
|
| 452 |
-
label_bbox = draw.textbbox((0, 0), category, font=font)
|
| 453 |
-
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1]
|
| 454 |
-
label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 5)
|
| 455 |
-
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 4], fill=color)
|
| 456 |
-
draw.text((label_x + 2, label_y + 2), category, fill='white', font=font)
|
| 457 |
-
return img_copy
|
| 458 |
-
|
| 459 |
-
def layoutjson2md(self, image: Image.Image, layout_data: List[Dict]) -> str:
|
| 460 |
-
md_lines, sorted_items = [], sorted(layout_data, key=lambda x: (x.get('bbox', [0]*4)[1], x.get('bbox', [0]*4)[0]))
|
| 461 |
-
for item in sorted_items:
|
| 462 |
-
cat, txt, bbox = item.get('category'), item.get('text'), item.get('bbox')
|
| 463 |
-
if cat == 'Picture' and bbox:
|
| 464 |
-
try:
|
| 465 |
-
x1, y1, x2, y2 = max(0, int(bbox[0])), max(0, int(bbox[1])), min(image.width, int(bbox[2])), min(image.height, int(bbox[3]))
|
| 466 |
-
if x2 > x1 and y2 > y1:
|
| 467 |
-
cropped = image.crop((x1, y1, x2, y2))
|
| 468 |
-
buffer = BytesIO()
|
| 469 |
-
cropped.save(buffer, format='PNG')
|
| 470 |
-
img_data = base64.b64encode(buffer.getvalue()).decode()
|
| 471 |
-
md_lines.append(f"\n")
|
| 472 |
-
except Exception: md_lines.append("\n")
|
| 473 |
-
elif not txt: continue
|
| 474 |
-
elif cat == 'Title': md_lines.append(f"# {txt}\n")
|
| 475 |
-
elif cat == 'Section-header': md_lines.append(f"## {txt}\n")
|
| 476 |
-
elif cat == 'List-item': md_lines.append(f"- {txt}\n")
|
| 477 |
-
elif cat == 'Formula': md_lines.append(f"$$\n{txt}\n$$\n")
|
| 478 |
-
elif cat == 'Caption': md_lines.append(f"*{txt}*\n")
|
| 479 |
-
elif cat == 'Footnote': md_lines.append(f"^{txt}^\n")
|
| 480 |
-
elif cat in ['Text', 'Table']: md_lines.append(f"{txt}\n")
|
| 481 |
-
return "\n".join(md_lines)
|
| 482 |
-
|
| 483 |
-
class DolphinModel:
|
| 484 |
-
def __init__(self, device: str):
|
| 485 |
-
self.model, self.processor, self.tokenizer, self.device = None, None, None, device
|
| 486 |
-
self.model_id = "ByteDance/Dolphin"
|
| 487 |
-
|
| 488 |
-
@spaces.GPU()
|
| 489 |
-
def load_model(self):
|
| 490 |
-
if self.model is None:
|
| 491 |
-
print("Loading Dolphin model...")
|
| 492 |
-
self.processor = AutoProcessor.from_pretrained(self.model_id)
|
| 493 |
-
self.model = VisionEncoderDecoderModel.from_pretrained(self.model_id).eval().to(self.device).half()
|
| 494 |
-
self.tokenizer = self.processor.tokenizer
|
| 495 |
-
print("Dolphin model loaded.")
|
| 496 |
-
|
| 497 |
-
@spaces.GPU()
|
| 498 |
-
def model_chat(self, prompt, image):
|
| 499 |
-
self.load_model()
|
| 500 |
-
images = image if isinstance(image, list) else [image]
|
| 501 |
-
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
| 502 |
-
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
|
| 503 |
-
batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
|
| 504 |
-
prompts = [f"<s>{p} <Answer/>" for p in prompts]
|
| 505 |
-
batch_prompt_inputs = self.tokenizer(prompts, add_special_tokens=False, return_tensors="pt")
|
| 506 |
-
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
|
| 507 |
-
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
|
| 508 |
-
outputs = self.model.generate(
|
| 509 |
-
pixel_values=batch_pixel_values, decoder_input_ids=batch_prompt_ids,
|
| 510 |
-
decoder_attention_mask=batch_attention_mask, max_length=4096,
|
| 511 |
-
pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id,
|
| 512 |
-
use_cache=True, bad_words_ids=[[self.tokenizer.unk_token_id]],
|
| 513 |
-
return_dict_in_generate=True, do_sample=False, num_beams=1, repetition_penalty=1.1
|
| 514 |
-
)
|
| 515 |
-
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
|
| 516 |
-
results = [seq.replace(p, "").replace("<pad>", "").replace("</s>", "").strip() for p, seq in zip(prompts, sequences)]
|
| 517 |
-
return results if isinstance(image, list) else results[0]
|
| 518 |
-
|
| 519 |
-
def process_elements(self, layout_str: str, image: Image.Image, max_batch_size: int = 16):
|
| 520 |
-
padded_image, dims = prepare_image(image)
|
| 521 |
-
layout_results = parse_layout_string(layout_str)
|
| 522 |
-
elements, reading_order = [], 0
|
| 523 |
-
for bbox, label in layout_results:
|
| 524 |
-
try:
|
| 525 |
-
coords = process_coordinates(bbox, padded_image, dims)
|
| 526 |
-
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2 = coords[:8]
|
| 527 |
-
cropped = padded_image[y1:y2, x1:x2]
|
| 528 |
-
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
|
| 529 |
-
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
| 530 |
-
elements.append({"crop": pil_crop, "label": label, "bbox": [orig_x1, orig_y1, orig_x2, orig_y2], "reading_order": reading_order})
|
| 531 |
-
reading_order += 1
|
| 532 |
-
except Exception as e:
|
| 533 |
-
print(f"Error processing Dolphin element bbox {bbox}: {e}")
|
| 534 |
-
|
| 535 |
-
text_elems = self.process_element_batch([e for e in elements if e['label'] != 'tab' and e['label'] != 'fig'], "Read text in the image.", max_batch_size)
|
| 536 |
-
table_elems = self.process_element_batch([e for e in elements if e['label'] == 'tab'], "Parse the table in the image.", max_batch_size)
|
| 537 |
-
fig_elems = [{"label": e['label'], "bbox": e['bbox'], "text": "", "reading_order": e['reading_order']} for e in elements if e['label'] == 'fig']
|
| 538 |
-
|
| 539 |
-
all_results = sorted(text_elems + table_elems + fig_elems, key=lambda x: x['reading_order'])
|
| 540 |
-
return all_results
|
| 541 |
-
|
| 542 |
-
def process_element_batch(self, elements, prompt, max_batch_size=16):
|
| 543 |
-
results = []
|
| 544 |
-
for i in range(0, len(elements), max_batch_size):
|
| 545 |
-
batch = elements[i:i+max_batch_size]
|
| 546 |
-
crops = [elem["crop"] for elem in batch]
|
| 547 |
-
prompts = [prompt] * len(crops)
|
| 548 |
-
batch_results = self.model_chat(prompts, crops)
|
| 549 |
-
for j, res_text in enumerate(batch_results):
|
| 550 |
-
elem = batch[j]
|
| 551 |
-
results.append({"label": elem["label"], "bbox": elem["bbox"], "text": res_text.strip(), "reading_order": elem["reading_order"]})
|
| 552 |
-
return results
|
| 553 |
-
|
| 554 |
-
def process_image(self, image: Image.Image):
|
| 555 |
-
layout_output = self.model_chat("Parse the reading order of this document.", image)
|
| 556 |
-
recognition_results = self.process_elements(layout_output, image)
|
| 557 |
-
markdown_content = MarkdownConverter().convert(recognition_results)
|
| 558 |
return {
|
| 559 |
-
'original_image': image,
|
| 560 |
-
'
|
|
|
|
|
|
|
|
|
|
| 561 |
}
|
| 562 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
|
| 568 |
def create_gradio_interface():
|
| 569 |
-
"""Create the
|
| 570 |
-
|
| 571 |
css = """
|
| 572 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 573 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
| 574 |
-
.process-button {
|
| 575 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
|
| 577 |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
|
|
|
|
|
|
|
| 578 |
"""
|
| 579 |
-
|
| 580 |
-
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot.OCR Comparator") as demo:
|
| 581 |
gr.HTML("""
|
| 582 |
<div class="title" style="text-align: center">
|
| 583 |
<h1>Dot<span style="color: red;">●</span><strong></strong>OCR Comparator</h1>
|
|
@@ -586,142 +727,110 @@ def create_gradio_interface():
|
|
| 586 |
</p>
|
| 587 |
</div>
|
| 588 |
""")
|
| 589 |
-
|
| 590 |
-
with gr.Row(elem_classes=["main-container"]):
|
| 591 |
with gr.Column(scale=1):
|
| 592 |
-
|
| 593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
with gr.Row():
|
| 595 |
examples = gr.Examples(
|
| 596 |
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
|
| 597 |
inputs=file_input,
|
| 598 |
label="Example Documents"
|
| 599 |
)
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
| 607 |
-
next_page_btn = gr.Button("Next ▶")
|
| 608 |
-
|
| 609 |
-
with gr.Accordion("Advanced Settings (dot.ocr only)", open=False):
|
| 610 |
-
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels", step=1)
|
| 611 |
-
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels", step=1)
|
| 612 |
-
|
| 613 |
with gr.Row():
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 617 |
with gr.Column(scale=2):
|
| 618 |
with gr.Tabs():
|
| 619 |
-
with gr.Tab("📝 Extracted Content"):
|
| 620 |
-
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", elem_id="markdown_output")
|
| 621 |
with gr.Tab("🖼️ Processed Image"):
|
| 622 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 623 |
with gr.Tab("📋 Layout JSON"):
|
| 624 |
-
json_output = gr.JSON(
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
images.append(Image.open(BytesIO(pix.tobytes("ppm"))).convert('RGB'))
|
| 636 |
-
doc.close()
|
| 637 |
-
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
| 638 |
-
images.append(Image.open(file_path).convert('RGB'))
|
| 639 |
-
return images, f"Page 1 / {len(images)}"
|
| 640 |
-
except Exception as e:
|
| 641 |
-
print(f"Error loading file for preview: {e}")
|
| 642 |
-
return [], f"Error loading file: {e}"
|
| 643 |
-
|
| 644 |
-
def handle_file_upload(file_path):
|
| 645 |
-
global PDF_CACHE
|
| 646 |
-
images, page_info_str = load_file_for_preview(file_path)
|
| 647 |
-
if not images:
|
| 648 |
-
return None, page_info_str
|
| 649 |
-
PDF_CACHE = {
|
| 650 |
-
"images": images, "current_page": 0, "total_pages": len(images),
|
| 651 |
-
"is_parsed": False, "results": [], "model_used": None
|
| 652 |
-
}
|
| 653 |
-
return images[0], f'<div class="page-info">{page_info_str}</div>'
|
| 654 |
-
|
| 655 |
-
def process_document(file_path, model_name, min_pix, max_pix):
|
| 656 |
-
global PDF_CACHE
|
| 657 |
-
if not file_path or not PDF_CACHE["images"]:
|
| 658 |
-
return "Please upload a file first.", None, None
|
| 659 |
-
|
| 660 |
-
if model_name not in MODELS:
|
| 661 |
-
if model_name == 'dot.ocr': MODELS[model_name] = DotOcrModel(DEVICE)
|
| 662 |
-
elif model_name == 'Dolphin': MODELS[model_name] = DolphinModel(DEVICE)
|
| 663 |
-
model = MODELS[model_name]
|
| 664 |
-
|
| 665 |
-
all_results, all_markdown = [], []
|
| 666 |
-
for i, img in enumerate(PDF_CACHE["images"]):
|
| 667 |
-
gr.Info(f"Processing page {i+1}/{len(PDF_CACHE['images'])} with {model_name}...")
|
| 668 |
-
if model_name == 'dot.ocr':
|
| 669 |
-
result = model.process_image(img, int(min_pix), int(max_pix))
|
| 670 |
-
else: # Dolphin
|
| 671 |
-
result = model.process_image(img)
|
| 672 |
-
all_results.append(result)
|
| 673 |
-
if result.get('markdown_content'):
|
| 674 |
-
all_markdown.append(f"### Page {i+1}\n\n{result['markdown_content']}")
|
| 675 |
-
|
| 676 |
-
PDF_CACHE.update({"results": all_results, "is_parsed": True, "model_used": model_name})
|
| 677 |
-
if not all_results: return "Processing failed.", None, None
|
| 678 |
-
|
| 679 |
-
first_result = all_results[0]
|
| 680 |
-
combined_md = "\n\n---\n\n".join(all_markdown)
|
| 681 |
-
|
| 682 |
-
return combined_md, first_result.get('processed_image'), first_result.get('layout_result')
|
| 683 |
-
|
| 684 |
-
def turn_page(direction):
|
| 685 |
-
global PDF_CACHE
|
| 686 |
-
if not PDF_CACHE["images"] or not PDF_CACHE["is_parsed"]:
|
| 687 |
-
return None, '<div class="page-info">No file parsed</div>', "No results yet", None, None
|
| 688 |
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
page_info_html = f'<div class="page-info">Page {idx + 1} / {PDF_CACHE["total_pages"]}</div>'
|
| 694 |
-
preview_img = PDF_CACHE["images"][idx]
|
| 695 |
-
result = PDF_CACHE["results"][idx]
|
| 696 |
-
|
| 697 |
-
all_md = [f"### Page {i+1}\n\n{res.get('markdown_content', '')}" for i, res in enumerate(PDF_CACHE["results"])]
|
| 698 |
-
md_content = "\n\n---\n\n".join(all_md) if PDF_CACHE["total_pages"] > 1 else result.get('markdown_content', 'No content')
|
| 699 |
-
|
| 700 |
-
return preview_img, page_info_html, md_content, result.get('processed_image'), result.get('layout_result')
|
| 701 |
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
|
| 707 |
-
# --- Wire UI components ---
|
| 708 |
-
file_input.change(handle_file_upload, inputs=file_input, outputs=[image_preview, page_info])
|
| 709 |
process_btn.click(
|
| 710 |
process_document,
|
| 711 |
-
inputs=[file_input,
|
| 712 |
-
outputs=[
|
| 713 |
)
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
|
|
|
|
|
|
| 718 |
return demo
|
| 719 |
|
| 720 |
if __name__ == "__main__":
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
os.makedirs("examples")
|
| 724 |
-
print("Created 'examples' directory. Please add sample images/PDFs there.")
|
| 725 |
-
|
| 726 |
-
app = create_gradio_interface()
|
| 727 |
-
app.queue().launch(debug=True, show_error=True)
|
|
|
|
| 1 |
+
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
import time
|
| 5 |
+
import uuid
|
| 6 |
+
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
+
import pymupdf
|
| 9 |
+
import spaces
|
| 10 |
import torch
|
|
|
|
|
|
|
| 11 |
from PIL import Image, ImageDraw, ImageFont
|
| 12 |
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
|
| 13 |
+
from huggingface_hub import snapshot_download
|
| 14 |
from qwen_vl_utils import process_vision_info
|
| 15 |
+
from utils.utils import prepare_image, parse_layout_string, process_coordinates, ImageDimensions
|
| 16 |
+
from utils.markdown_utils import MarkdownConverter
|
| 17 |
+
|
| 18 |
+
# Define device
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
|
| 21 |
+
# Load dot.ocr model
|
| 22 |
+
dot_ocr_model_id = "rednote-hilab/dots.ocr"
|
| 23 |
+
dot_ocr_model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
dot_ocr_model_id,
|
| 25 |
+
attn_implementation="flash_attention_2",
|
| 26 |
+
torch_dtype=torch.bfloat16,
|
| 27 |
+
device_map="auto",
|
| 28 |
+
trust_remote_code=True
|
| 29 |
+
)
|
| 30 |
+
dot_ocr_processor = AutoProcessor.from_pretrained(
|
| 31 |
+
dot_ocr_model_id,
|
| 32 |
+
trust_remote_code=True
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Load Dolphin model
|
| 36 |
+
dolphin_model_id = "ByteDance/Dolphin"
|
| 37 |
+
dolphin_processor = AutoProcessor.from_pretrained(dolphin_model_id)
|
| 38 |
+
dolphin_model = VisionEncoderDecoderModel.from_pretrained(dolphin_model_id)
|
| 39 |
+
dolphin_model.eval()
|
| 40 |
+
dolphin_model.to(device)
|
| 41 |
+
dolphin_model = dolphin_model.half()
|
| 42 |
+
dolphin_tokenizer = dolphin_processor.tokenizer
|
| 43 |
+
|
| 44 |
+
# Constants
|
| 45 |
MIN_PIXELS = 3136
|
| 46 |
MAX_PIXELS = 11289600
|
| 47 |
IMAGE_FACTOR = 28
|
| 48 |
+
|
| 49 |
+
# Prompts
|
| 50 |
+
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
| 51 |
+
|
| 52 |
1. Bbox format: [x1, y1, x2, y2]
|
| 53 |
+
|
| 54 |
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
| 55 |
+
|
| 56 |
3. Text Extraction & Formatting Rules:
|
| 57 |
- Picture: For the 'Picture' category, the text field should be omitted.
|
| 58 |
- Formula: Format its text as LaTeX.
|
| 59 |
- Table: Format its text as HTML.
|
| 60 |
- All Others (Text, Title, etc.): Format their text as Markdown.
|
| 61 |
+
|
| 62 |
4. Constraints:
|
| 63 |
- The output text must be the original text from the image, with no translation.
|
| 64 |
- All layout elements must be sorted according to human reading order.
|
| 65 |
+
|
| 66 |
5. Final Output: The entire output must be a single JSON object.
|
| 67 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
# Utility functions
|
| 70 |
+
def round_by_factor(number: int, factor: int) -> int:
|
| 71 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 72 |
+
return round(number / factor) * factor
|
| 73 |
+
|
| 74 |
+
def smart_resize(
|
| 75 |
+
height: int,
|
| 76 |
+
width: int,
|
| 77 |
+
factor: int = 28,
|
| 78 |
+
min_pixels: int = 3136,
|
| 79 |
+
max_pixels: int = 11289600,
|
| 80 |
+
):
|
| 81 |
+
"""Rescales the image so that the following conditions are met:
|
| 82 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 83 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 84 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 85 |
+
"""
|
| 86 |
+
if max(height, width) / min(height, width) > 200:
|
| 87 |
+
raise ValueError(
|
| 88 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
| 89 |
+
)
|
| 90 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
| 91 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
| 92 |
+
|
| 93 |
+
if h_bar * w_bar > max_pixels:
|
| 94 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 95 |
+
h_bar = round_by_factor(height / beta, factor)
|
| 96 |
+
w_bar = round_by_factor(width / beta, factor)
|
| 97 |
+
elif h_bar * w_bar < min_pixels:
|
| 98 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 99 |
+
h_bar = round_by_factor(height * beta, factor)
|
| 100 |
+
w_bar = round_by_factor(width * beta, factor)
|
| 101 |
+
return h_bar, w_bar
|
| 102 |
+
|
| 103 |
+
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
| 104 |
+
"""Fetch and process an image"""
|
| 105 |
+
if isinstance(image_input, str):
|
| 106 |
+
if image_input.startswith(("http://", "https://")):
|
| 107 |
+
response = requests.get(image_input)
|
| 108 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 109 |
+
else:
|
| 110 |
+
image = Image.open(image_input).convert('RGB')
|
| 111 |
+
elif isinstance(image_input, Image.Image):
|
| 112 |
+
image = image_input.convert('RGB')
|
| 113 |
+
else:
|
| 114 |
+
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
| 115 |
+
|
| 116 |
+
if min_pixels is not None or max_pixels is not None:
|
| 117 |
+
min_pixels = min_pixels or MIN_PIXELS
|
| 118 |
+
max_pixels = max_pixels or MAX_PIXELS
|
| 119 |
+
height, width = smart_resize(
|
| 120 |
+
image.height,
|
| 121 |
+
image.width,
|
| 122 |
+
factor=IMAGE_FACTOR,
|
| 123 |
+
min_pixels=min_pixels,
|
| 124 |
+
max_pixels=max_pixels
|
| 125 |
+
)
|
| 126 |
+
image = image.resize((width, height), Image.LANCZOS)
|
| 127 |
+
|
| 128 |
+
return image
|
| 129 |
|
| 130 |
+
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
| 131 |
+
"""Load images from PDF file"""
|
| 132 |
+
images = []
|
| 133 |
try:
|
| 134 |
+
pdf_document = pymupdf.open(pdf_path)
|
| 135 |
+
for page_num in range(len(pdf_document)):
|
| 136 |
+
page = pdf_document.load_page(page_num)
|
| 137 |
+
mat = pymupdf.Matrix(2.0, 2.0) # Increase resolution
|
| 138 |
+
pix = page.get_pixmap(matrix=mat)
|
| 139 |
+
img_data = pix.tobytes("ppm")
|
| 140 |
+
image = Image.open(BytesIO(img_data)).convert('RGB')
|
| 141 |
+
images.append(image)
|
| 142 |
+
pdf_document.close()
|
| 143 |
except Exception as e:
|
| 144 |
+
print(f"Error loading PDF: {e}")
|
| 145 |
+
return []
|
| 146 |
+
return images
|
| 147 |
+
|
| 148 |
+
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
| 149 |
+
"""Draw layout bounding boxes on image"""
|
| 150 |
+
img_copy = image.copy()
|
| 151 |
+
draw = ImageDraw.Draw(img_copy)
|
| 152 |
+
|
| 153 |
+
colors = {
|
| 154 |
+
'Caption': '#FF6B6B',
|
| 155 |
+
'Footnote': '#4ECDC4',
|
| 156 |
+
'Formula': '#45B7D1',
|
| 157 |
+
'List-item': '#96CEB4',
|
| 158 |
+
'Page-footer': '#FFEAA7',
|
| 159 |
+
'Page-header': '#DDA0DD',
|
| 160 |
+
'Picture': '#FFD93D',
|
| 161 |
+
'Section-header': '#6C5CE7',
|
| 162 |
+
'Table': '#FD79A8',
|
| 163 |
+
'Text': '#74B9FF',
|
| 164 |
+
'Title': '#E17055'
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
try:
|
| 168 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
|
| 169 |
+
except Exception:
|
| 170 |
+
font = ImageFont.load_default()
|
| 171 |
+
|
| 172 |
+
for item in layout_data:
|
| 173 |
+
if 'bbox' in item and 'category' in item:
|
| 174 |
+
bbox = item['bbox']
|
| 175 |
+
category = item['category']
|
| 176 |
+
color = colors.get(category, '#000000')
|
| 177 |
+
draw.rectangle(bbox, outline=color, width=2)
|
| 178 |
+
label = category
|
| 179 |
+
label_bbox = draw.textbbox((0, 0), label, font=font)
|
| 180 |
+
label_width = label_bbox[2] - label_bbox[0]
|
| 181 |
+
label_height = label_bbox[3] - label_bbox[1]
|
| 182 |
+
label_x = bbox[0]
|
| 183 |
+
label_y = max(0, bbox[1] - label_height - 2)
|
| 184 |
+
draw.rectangle(
|
| 185 |
+
[label_x, label_y, label_x + label_width + 4, label_y + label_height + 2],
|
| 186 |
+
fill=color
|
| 187 |
+
)
|
| 188 |
+
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
|
| 189 |
+
return img_copy
|
| 190 |
|
| 191 |
+
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
| 192 |
+
"""Convert layout JSON to markdown format"""
|
| 193 |
+
import base64
|
| 194 |
+
from io import BytesIO
|
| 195 |
+
|
| 196 |
+
markdown_lines = []
|
| 197 |
+
|
| 198 |
+
try:
|
| 199 |
+
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
| 200 |
+
|
| 201 |
+
for item in sorted_items:
|
| 202 |
+
category = item.get('category', '')
|
| 203 |
+
text = item.get(text_key, '')
|
| 204 |
+
bbox = item.get('bbox', [])
|
| 205 |
+
|
| 206 |
+
if category == 'Picture':
|
| 207 |
+
if bbox and len(bbox) == 4:
|
| 208 |
+
try:
|
| 209 |
+
x1, y1, x2, y2 = bbox
|
| 210 |
+
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
| 211 |
+
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
|
| 212 |
+
|
| 213 |
+
if x2 > x1 and y2 > y1:
|
| 214 |
+
cropped_img = image.crop((x1, y1, x2, y2))
|
| 215 |
+
buffer = BytesIO()
|
| 216 |
+
cropped_img.save(buffer, format='PNG')
|
| 217 |
+
img_data = base64.b64encode(buffer.getvalue()).decode()
|
| 218 |
+
markdown_lines.append(f"\n")
|
| 219 |
else:
|
| 220 |
+
markdown_lines.append("\n")
|
| 221 |
+
except Exception as e:
|
| 222 |
+
print(f"Error processing image region: {e}")
|
| 223 |
+
markdown_lines.append("\n")
|
| 224 |
else:
|
| 225 |
+
markdown_lines.append("\n")
|
| 226 |
+
elif not text:
|
| 227 |
+
continue
|
| 228 |
+
elif category == 'Title':
|
| 229 |
+
markdown_lines.append(f"# {text}\n")
|
| 230 |
+
elif category == 'Section-header':
|
| 231 |
+
markdown_lines.append(f"## {text}\n")
|
| 232 |
+
elif category == 'Text':
|
| 233 |
+
markdown_lines.append(f"{text}\n")
|
| 234 |
+
elif category == 'List-item':
|
| 235 |
+
markdown_lines.append(f"- {text}\n")
|
| 236 |
+
elif category == 'Table':
|
| 237 |
+
if text.strip().startswith('<'):
|
| 238 |
+
markdown_lines.append(f"{text}\n")
|
| 239 |
+
else:
|
| 240 |
+
markdown_lines.append(f"**Table:** {text}\n")
|
| 241 |
+
elif category == 'Formula':
|
| 242 |
+
if text.strip().startswith('$') or '\\' in text:
|
| 243 |
+
markdown_lines.append(f"$$\n{text}\n$$\n")
|
| 244 |
+
else:
|
| 245 |
+
markdown_lines.append(f"**Formula:** {text}\n")
|
| 246 |
+
elif category == 'Caption':
|
| 247 |
+
markdown_lines.append(f"*{text}*\n")
|
| 248 |
+
elif category == 'Footnote':
|
| 249 |
+
markdown_lines.append(f"^{text}^\n")
|
| 250 |
+
elif category in ['Page-header', 'Page-footer']:
|
| 251 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
else:
|
| 253 |
+
markdown_lines.append(f"{text}\n")
|
| 254 |
+
markdown_lines.append("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
except Exception as e:
|
| 256 |
+
print(f"Error converting to markdown: {e}")
|
| 257 |
+
return str(layout_data)
|
| 258 |
+
return "\n".join(markdown_lines)
|
| 259 |
+
|
| 260 |
+
# Global state variables
|
| 261 |
+
pdf_cache = {
|
| 262 |
+
"images": [],
|
| 263 |
+
"current_page": 0,
|
| 264 |
+
"total_pages": 0,
|
| 265 |
+
"file_type": None,
|
| 266 |
+
"is_parsed": False,
|
| 267 |
+
"results": []
|
| 268 |
+
}
|
| 269 |
|
| 270 |
+
@spaces.GPU()
|
| 271 |
+
def dot_ocr_inference(image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
|
| 272 |
+
"""Run inference on an image with the given prompt using dot.ocr model"""
|
| 273 |
try:
|
| 274 |
+
messages = [
|
| 275 |
+
{
|
| 276 |
+
"role": "user",
|
| 277 |
+
"content": [
|
| 278 |
+
{"type": "image", "image": image},
|
| 279 |
+
{"type": "text", "text": prompt}
|
| 280 |
+
]
|
| 281 |
+
}
|
| 282 |
+
]
|
| 283 |
+
text = dot_ocr_processor.apply_chat_template(
|
| 284 |
+
messages,
|
| 285 |
+
tokenize=False,
|
| 286 |
+
add_generation_prompt=True
|
| 287 |
+
)
|
| 288 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 289 |
+
inputs = dot_ocr_processor(
|
| 290 |
+
text=[text],
|
| 291 |
+
images=image_inputs,
|
| 292 |
+
videos=video_inputs,
|
| 293 |
+
padding=True,
|
| 294 |
+
return_tensors="pt",
|
| 295 |
+
)
|
| 296 |
+
inputs = inputs.to(device)
|
| 297 |
+
with torch.no_grad():
|
| 298 |
+
generated_ids = dot_ocr_model.generate(
|
| 299 |
+
**inputs,
|
| 300 |
+
max_new_tokens=max_new_tokens,
|
| 301 |
+
do_sample=False,
|
| 302 |
+
temperature=0.1
|
| 303 |
+
)
|
| 304 |
+
generated_ids_trimmed = [
|
| 305 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 306 |
+
]
|
| 307 |
+
output_text = dot_ocr_processor.batch_decode(
|
| 308 |
+
generated_ids_trimmed,
|
| 309 |
+
skip_special_tokens=True,
|
| 310 |
+
clean_up_tokenization_spaces=False
|
| 311 |
+
)
|
| 312 |
+
return output_text[0] if output_text else ""
|
| 313 |
except Exception as e:
|
| 314 |
+
print(f"Error during dot.ocr inference: {e}")
|
| 315 |
+
return f"Error during inference: {str(e)}"
|
|
|
|
| 316 |
|
| 317 |
+
def process_image_dot_ocr(image: Image.Image, min_pixels: Optional[int] = None, max_pixels: Optional[int] = None) -> Dict[str, Any]:
|
| 318 |
+
"""Process a single image with the dot.ocr model"""
|
| 319 |
try:
|
| 320 |
+
if min_pixels is not None or max_pixels is not None:
|
| 321 |
+
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
| 322 |
+
raw_output = dot_ocr_inference(image, prompt)
|
| 323 |
+
result = {
|
| 324 |
+
'original_image': image,
|
| 325 |
+
'raw_output': raw_output,
|
| 326 |
+
'processed_image': image,
|
| 327 |
+
'layout_result': None,
|
| 328 |
+
'markdown_content': None
|
| 329 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
try:
|
| 331 |
layout_data = json.loads(raw_output)
|
| 332 |
result['layout_result'] = layout_data
|
| 333 |
+
processed_image = draw_layout_on_image(image, layout_data)
|
| 334 |
+
result['processed_image'] = processed_image
|
| 335 |
+
markdown_content = layoutjson2md(image, layout_data, text_key='text')
|
| 336 |
+
result['markdown_content'] = markdown_content
|
| 337 |
+
except json.JSONDecodeError:
|
| 338 |
+
print("Failed to parse JSON output, using raw output")
|
| 339 |
+
result['markdown_content'] = raw_output
|
| 340 |
return result
|
| 341 |
+
except Exception as e:
|
| 342 |
+
print(f"Error processing image with dot.ocr: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
return {
|
| 344 |
+
'original_image': image,
|
| 345 |
+
'raw_output': f"Error processing image: {str(e)}",
|
| 346 |
+
'processed_image': image,
|
| 347 |
+
'layout_result': None,
|
| 348 |
+
'markdown_content': f"Error processing image: {str(e)}"
|
| 349 |
}
|
| 350 |
|
| 351 |
+
def process_all_pages_dot_ocr(file_path, min_pixels, max_pixels):
|
| 352 |
+
"""Process all pages of a document with dot.ocr model"""
|
| 353 |
+
if file_path.lower().endswith('.pdf'):
|
| 354 |
+
images = load_images_from_pdf(file_path)
|
| 355 |
+
else:
|
| 356 |
+
images = [Image.open(file_path).convert('RGB')]
|
| 357 |
+
results = []
|
| 358 |
+
for img in images:
|
| 359 |
+
result = process_image_dot_ocr(img, min_pixels, max_pixels)
|
| 360 |
+
results.append(result)
|
| 361 |
+
return results
|
| 362 |
+
|
| 363 |
+
# Dolphin model functions
|
| 364 |
+
@spaces.GPU()
|
| 365 |
+
def dolphin_model_chat(prompt, image):
|
| 366 |
+
"""Process an image or batch of images with the given prompt(s) using Dolphin model"""
|
| 367 |
+
is_batch = isinstance(image, list)
|
| 368 |
+
if not is_batch:
|
| 369 |
+
images = [image]
|
| 370 |
+
prompts = [prompt]
|
| 371 |
+
else:
|
| 372 |
+
images = image
|
| 373 |
+
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
| 374 |
+
batch_inputs = dolphin_processor(images, return_tensors="pt", padding=True)
|
| 375 |
+
batch_pixel_values = batch_inputs.pixel_values.half().to(device)
|
| 376 |
+
prompts = [f"<s>{p} <Answer/>" for p in prompts]
|
| 377 |
+
batch_prompt_inputs = dolphin_tokenizer(
|
| 378 |
+
prompts,
|
| 379 |
+
add_special_tokens=False,
|
| 380 |
+
return_tensors="pt"
|
| 381 |
+
)
|
| 382 |
+
batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
|
| 383 |
+
batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
|
| 384 |
+
outputs = dolphin_model.generate(
|
| 385 |
+
pixel_values=batch_pixel_values,
|
| 386 |
+
decoder_input_ids=batch_prompt_ids,
|
| 387 |
+
decoder_attention_mask=batch_attention_mask,
|
| 388 |
+
min_length=1,
|
| 389 |
+
max_length=4096,
|
| 390 |
+
pad_token_id=dolphin_tokenizer.pad_token_id,
|
| 391 |
+
eos_token_id=dolphin_tokenizer.eos_token_id,
|
| 392 |
+
use_cache=True,
|
| 393 |
+
bad_words_ids=[[dolphin_tokenizer.unk_token_id]],
|
| 394 |
+
return_dict_in_generate=True,
|
| 395 |
+
do_sample=False,
|
| 396 |
+
num_beams=1,
|
| 397 |
+
repetition_penalty=1.1
|
| 398 |
+
)
|
| 399 |
+
sequences = dolphin_tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
|
| 400 |
+
results = []
|
| 401 |
+
for i, sequence in enumerate(sequences):
|
| 402 |
+
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
|
| 403 |
+
results.append(cleaned)
|
| 404 |
+
if not is_batch:
|
| 405 |
+
return results[0]
|
| 406 |
+
return results
|
| 407 |
+
|
| 408 |
+
def process_element_batch_dolphin(elements, prompt, max_batch_size=16):
|
| 409 |
+
"""Process elements of the same type in batches for Dolphin model"""
|
| 410 |
+
results = []
|
| 411 |
+
batch_size = min(len(elements), max_batch_size)
|
| 412 |
+
for i in range(0, len(elements), batch_size):
|
| 413 |
+
batch_elements = elements[i:i+batch_size]
|
| 414 |
+
crops_list = [elem["crop"] for elem in batch_elements]
|
| 415 |
+
prompts_list = [prompt] * len(crops_list)
|
| 416 |
+
batch_results = dolphin_model_chat(prompts_list, crops_list)
|
| 417 |
+
for j, result in enumerate(batch_results):
|
| 418 |
+
elem = batch_elements[j]
|
| 419 |
+
results.append({
|
| 420 |
+
"label": elem["label"],
|
| 421 |
+
"bbox": elem["bbox"],
|
| 422 |
+
"text": result.strip(),
|
| 423 |
+
"reading_order": elem["reading_order"],
|
| 424 |
+
})
|
| 425 |
+
return results
|
| 426 |
+
|
| 427 |
+
def process_page_dolphin(image_path):
|
| 428 |
+
"""Process a single page with Dolphin model"""
|
| 429 |
+
pil_image = Image.open(image_path).convert("RGB")
|
| 430 |
+
layout_output = dolphin_model_chat("Parse the reading order of this document.", pil_image)
|
| 431 |
+
padded_image, dims = prepare_image(pil_image)
|
| 432 |
+
recognition_results = process_elements_dolphin(layout_output, padded_image, dims)
|
| 433 |
+
return recognition_results
|
| 434 |
+
|
| 435 |
+
def process_elements_dolphin(layout_results, padded_image, dims):
|
| 436 |
+
"""Parse all document elements for Dolphin model"""
|
| 437 |
+
layout_results = parse_layout_string(layout_results)
|
| 438 |
+
text_elements = []
|
| 439 |
+
table_elements = []
|
| 440 |
+
figure_results = []
|
| 441 |
+
previous_box = None
|
| 442 |
+
reading_order = 0
|
| 443 |
+
for bbox, label in layout_results:
|
| 444 |
+
try:
|
| 445 |
+
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
|
| 446 |
+
bbox, padded_image, dims, previous_box
|
| 447 |
+
)
|
| 448 |
+
cropped = padded_image[y1:y2, x1:x2]
|
| 449 |
+
if cropped.size > 0 and (cropped.shape[0] > 3 and cropped.shape[1] > 3):
|
| 450 |
+
if label == "fig":
|
| 451 |
+
try:
|
| 452 |
+
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
| 453 |
+
buffered = io.BytesIO()
|
| 454 |
+
pil_crop.save(buffered, format="PNG")
|
| 455 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 456 |
+
figure_results.append(
|
| 457 |
+
{
|
| 458 |
+
"label": label,
|
| 459 |
+
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
| 460 |
+
"text": img_base64,
|
| 461 |
+
"reading_order": reading_order,
|
| 462 |
+
}
|
| 463 |
+
)
|
| 464 |
+
except Exception as e:
|
| 465 |
+
print(f"Error encoding figure to base64: {e}")
|
| 466 |
+
figure_results.append(
|
| 467 |
+
{
|
| 468 |
+
"label": label,
|
| 469 |
+
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
| 470 |
+
"text": "",
|
| 471 |
+
"reading_order": reading_order,
|
| 472 |
+
}
|
| 473 |
+
)
|
| 474 |
+
else:
|
| 475 |
+
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
| 476 |
+
element_info = {
|
| 477 |
+
"crop": pil_crop,
|
| 478 |
+
"label": label,
|
| 479 |
+
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
| 480 |
+
"reading_order": reading_order,
|
| 481 |
+
}
|
| 482 |
+
if label == "tab":
|
| 483 |
+
table_elements.append(element_info)
|
| 484 |
+
else:
|
| 485 |
+
text_elements.append(element_info)
|
| 486 |
+
reading_order += 1
|
| 487 |
+
except Exception as e:
|
| 488 |
+
print(f"Error processing bbox with label {label}: {str(e)}")
|
| 489 |
+
continue
|
| 490 |
+
recognition_results = figure_results.copy()
|
| 491 |
+
if text_elements:
|
| 492 |
+
text_results = process_element_batch_dolphin(text_elements, "Read text in the image.")
|
| 493 |
+
recognition_results.extend(text_results)
|
| 494 |
+
if table_elements:
|
| 495 |
+
table_results = process_element_batch_dolphin(table_elements, "Parse the table in the image.")
|
| 496 |
+
recognition_results.extend(table_results)
|
| 497 |
+
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
|
| 498 |
+
return recognition_results
|
| 499 |
+
|
| 500 |
+
def generate_markdown(recognition_results):
|
| 501 |
+
"""Generate markdown from recognition results for Dolphin model"""
|
| 502 |
+
converter = MarkdownConverter()
|
| 503 |
+
return converter.convert(recognition_results)
|
| 504 |
+
|
| 505 |
+
def convert_all_pdf_pages_to_images(file_path, target_size=896):
|
| 506 |
+
"""Convert all pages of a PDF to images for Dolphin model"""
|
| 507 |
+
if file_path is None:
|
| 508 |
+
return []
|
| 509 |
+
try:
|
| 510 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
| 511 |
+
if file_ext == '.pdf':
|
| 512 |
+
doc = pymupdf.open(file_path)
|
| 513 |
+
image_paths = []
|
| 514 |
+
for page_num in range(len(doc)):
|
| 515 |
+
page = doc[page_num]
|
| 516 |
+
rect = page.rect
|
| 517 |
+
scale = target_size / max(rect.width, rect.height)
|
| 518 |
+
mat = pymupdf.Matrix(scale, scale)
|
| 519 |
+
pix = page.get_pixmap(matrix=mat)
|
| 520 |
+
img_data = pix.tobytes("png")
|
| 521 |
+
pil_image = Image.open(io.BytesIO(img_data))
|
| 522 |
+
with tempfile.NamedTemporaryFile(suffix=f"_page_{page_num}.png", delete=False) as tmp_file:
|
| 523 |
+
pil_image.save(tmp_file.name, "PNG")
|
| 524 |
+
image_paths.append(tmp_file.name)
|
| 525 |
+
doc.close()
|
| 526 |
+
return image_paths
|
| 527 |
+
else:
|
| 528 |
+
converted_path = convert_to_image(file_path, target_size)
|
| 529 |
+
return [converted_path] if converted_path else []
|
| 530 |
+
except Exception as e:
|
| 531 |
+
print(f"Error converting PDF pages to images: {e}")
|
| 532 |
+
return []
|
| 533 |
|
| 534 |
+
def convert_to_image(file_path, target_size=896, page_num=0):
|
| 535 |
+
"""Convert input file to image format for Dolphin model"""
|
| 536 |
+
if file_path is None:
|
| 537 |
+
return None
|
| 538 |
+
try:
|
| 539 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
| 540 |
+
if file_ext == '.pdf':
|
| 541 |
+
doc = pymupdf.open(file_path)
|
| 542 |
+
if page_num >= len(doc):
|
| 543 |
+
page_num = 0
|
| 544 |
+
page = doc[page_num]
|
| 545 |
+
rect = page.rect
|
| 546 |
+
scale = target_size / max(rect.width, rect.height)
|
| 547 |
+
mat = pymupdf.Matrix(scale, scale)
|
| 548 |
+
pix = page.get_pixmap(matrix=mat)
|
| 549 |
+
img_data = pix.tobytes("png")
|
| 550 |
+
pil_image = Image.open(io.BytesIO(img_data))
|
| 551 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
|
| 552 |
+
pil_image.save(tmp_file.name, "PNG")
|
| 553 |
+
doc.close()
|
| 554 |
+
return tmp_file.name
|
| 555 |
+
else:
|
| 556 |
+
pil_image = Image.open(file_path).convert("RGB")
|
| 557 |
+
w, h = pil_image.size
|
| 558 |
+
if max(w, h) > target_size:
|
| 559 |
+
if w > h:
|
| 560 |
+
new_w, new_h = target_size, int(h * target_size / w)
|
| 561 |
+
else:
|
| 562 |
+
new_w, new_h = int(w * target_size / h), target_size
|
| 563 |
+
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 564 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
|
| 565 |
+
pil_image.save(tmp_file.name, "PNG")
|
| 566 |
+
return tmp_file.name
|
| 567 |
+
except Exception as e:
|
| 568 |
+
print(f"Error converting file to image: {e}")
|
| 569 |
+
return file_path
|
| 570 |
+
|
| 571 |
+
def process_all_pages_dolphin(file_path):
|
| 572 |
+
"""Process all pages of a document with Dolphin model"""
|
| 573 |
+
image_paths = convert_all_pdf_pages_to_images(file_path)
|
| 574 |
+
per_page_results = []
|
| 575 |
+
for image_path in image_paths:
|
| 576 |
+
try:
|
| 577 |
+
original_image = Image.open(image_path).convert('RGB')
|
| 578 |
+
recognition_results = process_page_dolphin(image_path)
|
| 579 |
+
markdown_content = generate_markdown(recognition_results)
|
| 580 |
+
placeholder_text = "Layout visualization not available for Dolphin model"
|
| 581 |
+
processed_image = create_placeholder_image(placeholder_text, size=(original_image.width, original_image.height))
|
| 582 |
+
per_page_results.append({
|
| 583 |
+
'original_image': original_image,
|
| 584 |
+
'processed_image': processed_image,
|
| 585 |
+
'markdown_content': markdown_content,
|
| 586 |
+
'layout_result': recognition_results
|
| 587 |
+
})
|
| 588 |
+
except Exception as e:
|
| 589 |
+
print(f"Error processing page: {e}")
|
| 590 |
+
per_page_results.append({
|
| 591 |
+
'original_image': Image.new('RGB', (100, 100), color='white'),
|
| 592 |
+
'processed_image': create_placeholder_image("Error processing page", size=(100, 100)),
|
| 593 |
+
'markdown_content': f"Error processing page: {str(e)}",
|
| 594 |
+
'layout_result': None
|
| 595 |
+
})
|
| 596 |
+
finally:
|
| 597 |
+
if os.path.exists(image_path):
|
| 598 |
+
os.remove(image_path)
|
| 599 |
+
return per_page_results
|
| 600 |
+
|
| 601 |
+
def create_placeholder_image(text, size=(400, 200)):
|
| 602 |
+
"""Create a placeholder image with text"""
|
| 603 |
+
img = Image.new('RGB', size, color='white')
|
| 604 |
+
draw = ImageDraw.Draw(img)
|
| 605 |
+
try:
|
| 606 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
|
| 607 |
+
except Exception:
|
| 608 |
+
font = ImageFont.load_default()
|
| 609 |
+
draw.text((10, 10), text, fill='black', font=font)
|
| 610 |
+
return img
|
| 611 |
+
|
| 612 |
+
# Gradio interface functions
|
| 613 |
+
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
| 614 |
+
"""Load file for preview (supports PDF and images)"""
|
| 615 |
+
global pdf_cache
|
| 616 |
+
if not file_path or not os.path.exists(file_path):
|
| 617 |
+
return None, "No file selected"
|
| 618 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
| 619 |
+
try:
|
| 620 |
+
if file_ext == '.pdf':
|
| 621 |
+
images = load_images_from_pdf(file_path)
|
| 622 |
+
if not images:
|
| 623 |
+
return None, "Failed to load PDF"
|
| 624 |
+
pdf_cache.update({
|
| 625 |
+
"images": images,
|
| 626 |
+
"current_page": 0,
|
| 627 |
+
"total_pages": len(images),
|
| 628 |
+
"file_type": "pdf",
|
| 629 |
+
"is_parsed": False,
|
| 630 |
+
"results": []
|
| 631 |
+
})
|
| 632 |
+
return images[0], f"Page 1 / {len(images)}"
|
| 633 |
+
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
| 634 |
+
image = Image.open(file_path).convert('RGB')
|
| 635 |
+
pdf_cache.update({
|
| 636 |
+
"images": [image],
|
| 637 |
+
"current_page": 0,
|
| 638 |
+
"total_pages": 1,
|
| 639 |
+
"file_type": "image",
|
| 640 |
+
"is_parsed": False,
|
| 641 |
+
"results": []
|
| 642 |
+
})
|
| 643 |
+
return image, "Page 1 / 1"
|
| 644 |
+
else:
|
| 645 |
+
return None, f"Unsupported file format: {file_ext}"
|
| 646 |
+
except Exception as e:
|
| 647 |
+
print(f"Error loading file: {e}")
|
| 648 |
+
return None, f"Error loading file: {str(e)}"
|
| 649 |
+
|
| 650 |
+
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, str, Optional[Image.Image], Optional[Dict]]:
|
| 651 |
+
"""Navigate through PDF pages and update all relevant outputs."""
|
| 652 |
+
global pdf_cache
|
| 653 |
+
if not pdf_cache["images"]:
|
| 654 |
+
return None, "No file loaded", "No results yet", None, None
|
| 655 |
+
if direction == "prev":
|
| 656 |
+
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
|
| 657 |
+
elif direction == "next":
|
| 658 |
+
pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
|
| 659 |
+
index = pdf_cache["current_page"]
|
| 660 |
+
current_image_preview = pdf_cache["images"][index]
|
| 661 |
+
page_info_html = f"Page {index + 1} / {pdf_cache['total_pages']}"
|
| 662 |
+
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]):
|
| 663 |
+
result = pdf_cache["results"][index]
|
| 664 |
+
processed_img = result['processed_image']
|
| 665 |
+
markdown_content = result['markdown_content'] or "No content available"
|
| 666 |
+
layout_json = result['layout_result']
|
| 667 |
+
else:
|
| 668 |
+
processed_img = None
|
| 669 |
+
markdown_content = "Page not processed yet"
|
| 670 |
+
layout_json = None
|
| 671 |
+
return current_image_preview, page_info_html, markdown_content, processed_img, layout_json
|
| 672 |
+
|
| 673 |
+
def process_document(model_choice, file_path, max_tokens, min_pix, max_pix):
|
| 674 |
+
"""Process the uploaded document with the selected model"""
|
| 675 |
+
global pdf_cache
|
| 676 |
+
try:
|
| 677 |
+
if not file_path:
|
| 678 |
+
return None, "Please upload a file first.", None
|
| 679 |
+
if model_choice == "dot.ocr":
|
| 680 |
+
results = process_all_pages_dot_ocr(file_path, min_pix, max_pix)
|
| 681 |
+
elif model_choice == "Dolphin":
|
| 682 |
+
results = process_all_pages_dolphin(file_path)
|
| 683 |
+
else:
|
| 684 |
+
raise ValueError("Invalid model choice")
|
| 685 |
+
pdf_cache["results"] = results
|
| 686 |
+
pdf_cache["is_parsed"] = True
|
| 687 |
+
first_result = results[0]
|
| 688 |
+
if model_choice == "dot.ocr":
|
| 689 |
+
processed_img = first_result['processed_image']
|
| 690 |
+
markdown_content = first_result['markdown_content']
|
| 691 |
+
layout_json = first_result['layout_result']
|
| 692 |
+
else:
|
| 693 |
+
processed_img = first_result['processed_image']
|
| 694 |
+
markdown_content = first_result['markdown_content']
|
| 695 |
+
layout_json = first_result['layout_result']
|
| 696 |
+
return processed_img, markdown_content, layout_json
|
| 697 |
+
except Exception as e:
|
| 698 |
+
error_msg = f"Error processing document: {str(e)}"
|
| 699 |
+
print(error_msg)
|
| 700 |
+
return None, error_msg, None
|
| 701 |
|
| 702 |
def create_gradio_interface():
|
| 703 |
+
"""Create the Gradio interface"""
|
|
|
|
| 704 |
css = """
|
| 705 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 706 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
| 707 |
+
.process-button {
|
| 708 |
+
border: none !important;
|
| 709 |
+
color: white !important;
|
| 710 |
+
font-weight: bold !important;
|
| 711 |
+
background-color: blue !important;}
|
| 712 |
+
.process-button:hover {
|
| 713 |
+
background-color: darkblue !important;
|
| 714 |
+
transform: translateY(-2px) !important;
|
| 715 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
| 716 |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
|
| 717 |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
|
| 718 |
+
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
|
| 719 |
+
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
|
| 720 |
"""
|
| 721 |
+
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
|
|
|
| 722 |
gr.HTML("""
|
| 723 |
<div class="title" style="text-align: center">
|
| 724 |
<h1>Dot<span style="color: red;">●</span><strong></strong>OCR Comparator</h1>
|
|
|
|
| 727 |
</p>
|
| 728 |
</div>
|
| 729 |
""")
|
| 730 |
+
with gr.Row():
|
|
|
|
| 731 |
with gr.Column(scale=1):
|
| 732 |
+
model_choice = gr.Radio(
|
| 733 |
+
choices=["dot.ocr", "Dolphin"],
|
| 734 |
+
label="Select Model",
|
| 735 |
+
value="dot.ocr"
|
| 736 |
+
)
|
| 737 |
+
file_input = gr.File(
|
| 738 |
+
label="Upload Image or PDF",
|
| 739 |
+
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
|
| 740 |
+
type="filepath"
|
| 741 |
+
)
|
| 742 |
with gr.Row():
|
| 743 |
examples = gr.Examples(
|
| 744 |
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
|
| 745 |
inputs=file_input,
|
| 746 |
label="Example Documents"
|
| 747 |
)
|
| 748 |
+
image_preview = gr.Image(
|
| 749 |
+
label="Preview",
|
| 750 |
+
type="pil",
|
| 751 |
+
interactive=False,
|
| 752 |
+
height=300
|
| 753 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 754 |
with gr.Row():
|
| 755 |
+
prev_page_btn = gr.Button("◀ Previous", size="md")
|
| 756 |
+
page_info = gr.HTML("No file loaded")
|
| 757 |
+
next_page_btn = gr.Button("Next ▶", size="md")
|
| 758 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 759 |
+
max_new_tokens = gr.Slider(
|
| 760 |
+
minimum=1000,
|
| 761 |
+
maximum=32000,
|
| 762 |
+
value=24000,
|
| 763 |
+
step=1000,
|
| 764 |
+
label="Max New Tokens",
|
| 765 |
+
info="Maximum number of tokens to generate"
|
| 766 |
+
)
|
| 767 |
+
min_pixels = gr.Number(
|
| 768 |
+
value=MIN_PIXELS,
|
| 769 |
+
label="Min Pixels",
|
| 770 |
+
info="Minimum image resolution"
|
| 771 |
+
)
|
| 772 |
+
max_pixels = gr.Number(
|
| 773 |
+
value=MAX_PIXELS,
|
| 774 |
+
label="Max Pixels",
|
| 775 |
+
info="Maximum image resolution"
|
| 776 |
+
)
|
| 777 |
+
process_btn = gr.Button(
|
| 778 |
+
"🚀 Process Document",
|
| 779 |
+
variant="primary",
|
| 780 |
+
elem_classes=["process-button"],
|
| 781 |
+
size="lg"
|
| 782 |
+
)
|
| 783 |
+
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
| 784 |
with gr.Column(scale=2):
|
| 785 |
with gr.Tabs():
|
|
|
|
|
|
|
| 786 |
with gr.Tab("🖼️ Processed Image"):
|
| 787 |
+
processed_image = gr.Image(
|
| 788 |
+
label="Image with Layout Detection",
|
| 789 |
+
type="pil",
|
| 790 |
+
interactive=False,
|
| 791 |
+
height=500
|
| 792 |
+
)
|
| 793 |
+
with gr.Tab("📝 Extracted Content"):
|
| 794 |
+
markdown_output = gr.Markdown(
|
| 795 |
+
value="Click 'Process Document' to see extracted content...",
|
| 796 |
+
height=500
|
| 797 |
+
)
|
| 798 |
with gr.Tab("📋 Layout JSON"):
|
| 799 |
+
json_output = gr.JSON(
|
| 800 |
+
label="Layout Analysis Results",
|
| 801 |
+
value=None
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
# Event handlers
|
| 805 |
+
file_input.change(
|
| 806 |
+
lambda file_path: load_file_for_preview(file_path),
|
| 807 |
+
inputs=[file_input],
|
| 808 |
+
outputs=[image_preview, page_info]
|
| 809 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 810 |
|
| 811 |
+
prev_page_btn.click(
|
| 812 |
+
lambda: turn_page("prev"),
|
| 813 |
+
outputs=[image_preview, page_info, markdown_output, processed_image, json_output]
|
| 814 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 815 |
|
| 816 |
+
next_page_btn.click(
|
| 817 |
+
lambda: turn_page("next"),
|
| 818 |
+
outputs=[image_preview, page_info, markdown_output, processed_image, json_output]
|
| 819 |
+
)
|
| 820 |
|
|
|
|
|
|
|
| 821 |
process_btn.click(
|
| 822 |
process_document,
|
| 823 |
+
inputs=[model_choice, file_input, max_new_tokens, min_pixels, max_pixels],
|
| 824 |
+
outputs=[processed_image, markdown_output, json_output]
|
| 825 |
)
|
| 826 |
+
|
| 827 |
+
clear_btn.click(
|
| 828 |
+
lambda: (None, None, "No file loaded", None, "Click 'Process Document' to see extracted content...", None),
|
| 829 |
+
outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output]
|
| 830 |
+
)
|
| 831 |
+
|
| 832 |
return demo
|
| 833 |
|
| 834 |
if __name__ == "__main__":
|
| 835 |
+
demo = create_gradio_interface()
|
| 836 |
+
demo.queue(max_size=10).launch(share=False, debug=True, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|