Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,30 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import
|
|
|
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
-
import
|
| 9 |
-
import spaces
|
| 10 |
import torch
|
| 11 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 12 |
-
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
|
| 13 |
from huggingface_hub import snapshot_download
|
| 14 |
-
from
|
| 15 |
-
from
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
-
|
| 21 |
-
# Load dot.ocr model
|
| 22 |
-
dot_ocr_model_id = "rednote-hilab/dots.ocr"
|
| 23 |
-
dot_ocr_model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
-
dot_ocr_model_id,
|
| 25 |
-
attn_implementation="flash_attention_2",
|
| 26 |
-
torch_dtype=torch.bfloat16,
|
| 27 |
-
device_map="auto",
|
| 28 |
-
trust_remote_code=True
|
| 29 |
-
)
|
| 30 |
-
dot_ocr_processor = AutoProcessor.from_pretrained(
|
| 31 |
-
dot_ocr_model_id,
|
| 32 |
-
trust_remote_code=True
|
| 33 |
)
|
| 34 |
-
|
| 35 |
-
# Load Dolphin model
|
| 36 |
-
dolphin_model_id = "ByteDance/Dolphin"
|
| 37 |
-
dolphin_processor = AutoProcessor.from_pretrained(dolphin_model_id)
|
| 38 |
-
dolphin_model = VisionEncoderDecoderModel.from_pretrained(dolphin_model_id)
|
| 39 |
-
dolphin_model.eval()
|
| 40 |
-
dolphin_model.to(device)
|
| 41 |
-
dolphin_model = dolphin_model.half()
|
| 42 |
-
dolphin_tokenizer = dolphin_processor.tokenizer
|
| 43 |
|
| 44 |
# Constants
|
| 45 |
MIN_PIXELS = 3136
|
| 46 |
MAX_PIXELS = 11289600
|
| 47 |
IMAGE_FACTOR = 28
|
|
|
|
| 48 |
|
| 49 |
# Prompts
|
| 50 |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
|
@@ -66,11 +46,55 @@ prompt = """Please output the layout information from the PDF image, including e
|
|
| 66 |
5. Final Output: The entire output must be a single JSON object.
|
| 67 |
"""
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
# Utility functions
|
| 70 |
def round_by_factor(number: int, factor: int) -> int:
|
| 71 |
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 72 |
return round(number / factor) * factor
|
| 73 |
|
|
|
|
| 74 |
def smart_resize(
|
| 75 |
height: int,
|
| 76 |
width: int,
|
|
@@ -100,6 +124,7 @@ def smart_resize(
|
|
| 100 |
w_bar = round_by_factor(width * beta, factor)
|
| 101 |
return h_bar, w_bar
|
| 102 |
|
|
|
|
| 103 |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
| 104 |
"""Fetch and process an image"""
|
| 105 |
if isinstance(image_input, str):
|
|
@@ -112,29 +137,31 @@ def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
|
| 112 |
image = image_input.convert('RGB')
|
| 113 |
else:
|
| 114 |
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
| 115 |
-
|
| 116 |
if min_pixels is not None or max_pixels is not None:
|
| 117 |
min_pixels = min_pixels or MIN_PIXELS
|
| 118 |
max_pixels = max_pixels or MAX_PIXELS
|
| 119 |
height, width = smart_resize(
|
| 120 |
-
image.height,
|
| 121 |
-
image.width,
|
| 122 |
factor=IMAGE_FACTOR,
|
| 123 |
min_pixels=min_pixels,
|
| 124 |
max_pixels=max_pixels
|
| 125 |
)
|
| 126 |
image = image.resize((width, height), Image.LANCZOS)
|
| 127 |
-
|
| 128 |
return image
|
| 129 |
|
|
|
|
| 130 |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
| 131 |
"""Load images from PDF file"""
|
| 132 |
images = []
|
| 133 |
try:
|
| 134 |
-
pdf_document =
|
| 135 |
for page_num in range(len(pdf_document)):
|
| 136 |
page = pdf_document.load_page(page_num)
|
| 137 |
-
|
|
|
|
| 138 |
pix = page.get_pixmap(matrix=mat)
|
| 139 |
img_data = pix.tobytes("ppm")
|
| 140 |
image = Image.open(BytesIO(img_data)).convert('RGB')
|
|
@@ -145,14 +172,16 @@ def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
|
| 145 |
return []
|
| 146 |
return images
|
| 147 |
|
|
|
|
| 148 |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
| 149 |
"""Draw layout bounding boxes on image"""
|
| 150 |
img_copy = image.copy()
|
| 151 |
draw = ImageDraw.Draw(img_copy)
|
| 152 |
-
|
|
|
|
| 153 |
colors = {
|
| 154 |
'Caption': '#FF6B6B',
|
| 155 |
-
'Footnote': '#4ECDC4',
|
| 156 |
'Formula': '#45B7D1',
|
| 157 |
'List-item': '#96CEB4',
|
| 158 |
'Page-footer': '#FFEAA7',
|
|
@@ -163,58 +192,134 @@ def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.I
|
|
| 163 |
'Text': '#74B9FF',
|
| 164 |
'Title': '#E17055'
|
| 165 |
}
|
| 166 |
-
|
| 167 |
try:
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
return img_copy
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
| 192 |
"""Convert layout JSON to markdown format"""
|
| 193 |
import base64
|
| 194 |
from io import BytesIO
|
| 195 |
-
|
| 196 |
markdown_lines = []
|
| 197 |
-
|
| 198 |
try:
|
| 199 |
-
|
| 200 |
-
|
|
|
|
| 201 |
for item in sorted_items:
|
| 202 |
category = item.get('category', '')
|
| 203 |
text = item.get(text_key, '')
|
| 204 |
bbox = item.get('bbox', [])
|
| 205 |
-
|
| 206 |
if category == 'Picture':
|
|
|
|
| 207 |
if bbox and len(bbox) == 4:
|
| 208 |
try:
|
|
|
|
| 209 |
x1, y1, x2, y2 = bbox
|
|
|
|
| 210 |
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
| 211 |
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
|
| 212 |
-
|
| 213 |
if x2 > x1 and y2 > y1:
|
| 214 |
cropped_img = image.crop((x1, y1, x2, y2))
|
|
|
|
|
|
|
| 215 |
buffer = BytesIO()
|
| 216 |
cropped_img.save(buffer, format='PNG')
|
| 217 |
img_data = base64.b64encode(buffer.getvalue()).decode()
|
|
|
|
|
|
|
| 218 |
markdown_lines.append(f"\n")
|
| 219 |
else:
|
| 220 |
markdown_lines.append("\n")
|
|
@@ -234,11 +339,13 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
| 234 |
elif category == 'List-item':
|
| 235 |
markdown_lines.append(f"- {text}\n")
|
| 236 |
elif category == 'Table':
|
|
|
|
| 237 |
if text.strip().startswith('<'):
|
| 238 |
markdown_lines.append(f"{text}\n")
|
| 239 |
else:
|
| 240 |
markdown_lines.append(f"**Table:** {text}\n")
|
| 241 |
elif category == 'Formula':
|
|
|
|
| 242 |
if text.strip().startswith('$') or '\\' in text:
|
| 243 |
markdown_lines.append(f"$$\n{text}\n$$\n")
|
| 244 |
else:
|
|
@@ -248,16 +355,21 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
| 248 |
elif category == 'Footnote':
|
| 249 |
markdown_lines.append(f"^{text}^\n")
|
| 250 |
elif category in ['Page-header', 'Page-footer']:
|
|
|
|
| 251 |
continue
|
| 252 |
else:
|
| 253 |
markdown_lines.append(f"{text}\n")
|
| 254 |
-
|
|
|
|
|
|
|
| 255 |
except Exception as e:
|
| 256 |
print(f"Error converting to markdown: {e}")
|
| 257 |
return str(layout_data)
|
|
|
|
| 258 |
return "\n".join(markdown_lines)
|
| 259 |
|
| 260 |
-
|
|
|
|
| 261 |
pdf_cache = {
|
| 262 |
"images": [],
|
| 263 |
"current_page": 0,
|
|
@@ -266,60 +378,74 @@ pdf_cache = {
|
|
| 266 |
"is_parsed": False,
|
| 267 |
"results": []
|
| 268 |
}
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
"""Run inference on an image with the given prompt using dot.ocr model"""
|
| 273 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
messages = [
|
| 275 |
{
|
| 276 |
"role": "user",
|
| 277 |
"content": [
|
| 278 |
-
{"type": "
|
| 279 |
-
{"type": "
|
| 280 |
]
|
| 281 |
}
|
| 282 |
]
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
)
|
| 288 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
| 289 |
-
inputs = dot_ocr_processor(
|
| 290 |
-
text=[text],
|
| 291 |
-
images=image_inputs,
|
| 292 |
-
videos=video_inputs,
|
| 293 |
-
padding=True,
|
| 294 |
-
return_tensors="pt",
|
| 295 |
-
)
|
| 296 |
-
inputs = inputs.to(device)
|
| 297 |
with torch.no_grad():
|
| 298 |
-
generated_ids =
|
| 299 |
**inputs,
|
| 300 |
max_new_tokens=max_new_tokens,
|
| 301 |
do_sample=False,
|
| 302 |
temperature=0.1
|
| 303 |
)
|
| 304 |
-
|
|
|
|
| 305 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 306 |
]
|
| 307 |
-
output_text =
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
clean_up_tokenization_spaces=False
|
| 311 |
-
)
|
| 312 |
-
return output_text[0] if output_text else ""
|
| 313 |
except Exception as e:
|
| 314 |
-
print(f"Error during
|
|
|
|
| 315 |
return f"Error during inference: {str(e)}"
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
try:
|
|
|
|
| 320 |
if min_pixels is not None or max_pixels is not None:
|
| 321 |
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
result = {
|
| 324 |
'original_image': image,
|
| 325 |
'raw_output': raw_output,
|
|
@@ -327,19 +453,45 @@ def process_image_dot_ocr(image: Image.Image, min_pixels: Optional[int] = None,
|
|
| 327 |
'layout_result': None,
|
| 328 |
'markdown_content': None
|
| 329 |
}
|
|
|
|
|
|
|
| 330 |
try:
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
result['layout_result'] = layout_data
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
except json.JSONDecodeError:
|
| 338 |
print("Failed to parse JSON output, using raw output")
|
| 339 |
result['markdown_content'] = raw_output
|
|
|
|
| 340 |
return result
|
|
|
|
| 341 |
except Exception as e:
|
| 342 |
-
print(f"Error processing image
|
|
|
|
| 343 |
return {
|
| 344 |
'original_image': image,
|
| 345 |
'raw_output': f"Error processing image: {str(e)}",
|
|
@@ -348,279 +500,23 @@ def process_image_dot_ocr(image: Image.Image, min_pixels: Optional[int] = None,
|
|
| 348 |
'markdown_content': f"Error processing image: {str(e)}"
|
| 349 |
}
|
| 350 |
|
| 351 |
-
def process_all_pages_dot_ocr(file_path, min_pixels, max_pixels):
|
| 352 |
-
"""Process all pages of a document with dot.ocr model"""
|
| 353 |
-
if file_path.lower().endswith('.pdf'):
|
| 354 |
-
images = load_images_from_pdf(file_path)
|
| 355 |
-
else:
|
| 356 |
-
images = [Image.open(file_path).convert('RGB')]
|
| 357 |
-
results = []
|
| 358 |
-
for img in images:
|
| 359 |
-
result = process_image_dot_ocr(img, min_pixels, max_pixels)
|
| 360 |
-
results.append(result)
|
| 361 |
-
return results
|
| 362 |
-
|
| 363 |
-
# Dolphin model functions
|
| 364 |
-
@spaces.GPU()
|
| 365 |
-
def dolphin_model_chat(prompt, image):
|
| 366 |
-
"""Process an image or batch of images with the given prompt(s) using Dolphin model"""
|
| 367 |
-
is_batch = isinstance(image, list)
|
| 368 |
-
if not is_batch:
|
| 369 |
-
images = [image]
|
| 370 |
-
prompts = [prompt]
|
| 371 |
-
else:
|
| 372 |
-
images = image
|
| 373 |
-
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
| 374 |
-
batch_inputs = dolphin_processor(images, return_tensors="pt", padding=True)
|
| 375 |
-
batch_pixel_values = batch_inputs.pixel_values.half().to(device)
|
| 376 |
-
prompts = [f"<s>{p} <Answer/>" for p in prompts]
|
| 377 |
-
batch_prompt_inputs = dolphin_tokenizer(
|
| 378 |
-
prompts,
|
| 379 |
-
add_special_tokens=False,
|
| 380 |
-
return_tensors="pt"
|
| 381 |
-
)
|
| 382 |
-
batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
|
| 383 |
-
batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
|
| 384 |
-
outputs = dolphin_model.generate(
|
| 385 |
-
pixel_values=batch_pixel_values,
|
| 386 |
-
decoder_input_ids=batch_prompt_ids,
|
| 387 |
-
decoder_attention_mask=batch_attention_mask,
|
| 388 |
-
min_length=1,
|
| 389 |
-
max_length=4096,
|
| 390 |
-
pad_token_id=dolphin_tokenizer.pad_token_id,
|
| 391 |
-
eos_token_id=dolphin_tokenizer.eos_token_id,
|
| 392 |
-
use_cache=True,
|
| 393 |
-
bad_words_ids=[[dolphin_tokenizer.unk_token_id]],
|
| 394 |
-
return_dict_in_generate=True,
|
| 395 |
-
do_sample=False,
|
| 396 |
-
num_beams=1,
|
| 397 |
-
repetition_penalty=1.1
|
| 398 |
-
)
|
| 399 |
-
sequences = dolphin_tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
|
| 400 |
-
results = []
|
| 401 |
-
for i, sequence in enumerate(sequences):
|
| 402 |
-
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
|
| 403 |
-
results.append(cleaned)
|
| 404 |
-
if not is_batch:
|
| 405 |
-
return results[0]
|
| 406 |
-
return results
|
| 407 |
-
|
| 408 |
-
def process_element_batch_dolphin(elements, prompt, max_batch_size=16):
|
| 409 |
-
"""Process elements of the same type in batches for Dolphin model"""
|
| 410 |
-
results = []
|
| 411 |
-
batch_size = min(len(elements), max_batch_size)
|
| 412 |
-
for i in range(0, len(elements), batch_size):
|
| 413 |
-
batch_elements = elements[i:i+batch_size]
|
| 414 |
-
crops_list = [elem["crop"] for elem in batch_elements]
|
| 415 |
-
prompts_list = [prompt] * len(crops_list)
|
| 416 |
-
batch_results = dolphin_model_chat(prompts_list, crops_list)
|
| 417 |
-
for j, result in enumerate(batch_results):
|
| 418 |
-
elem = batch_elements[j]
|
| 419 |
-
results.append({
|
| 420 |
-
"label": elem["label"],
|
| 421 |
-
"bbox": elem["bbox"],
|
| 422 |
-
"text": result.strip(),
|
| 423 |
-
"reading_order": elem["reading_order"],
|
| 424 |
-
})
|
| 425 |
-
return results
|
| 426 |
-
|
| 427 |
-
def process_page_dolphin(image_path):
|
| 428 |
-
"""Process a single page with Dolphin model"""
|
| 429 |
-
pil_image = Image.open(image_path).convert("RGB")
|
| 430 |
-
layout_output = dolphin_model_chat("Parse the reading order of this document.", pil_image)
|
| 431 |
-
padded_image, dims = prepare_image(pil_image)
|
| 432 |
-
recognition_results = process_elements_dolphin(layout_output, padded_image, dims)
|
| 433 |
-
return recognition_results
|
| 434 |
-
|
| 435 |
-
def process_elements_dolphin(layout_results, padded_image, dims):
|
| 436 |
-
"""Parse all document elements for Dolphin model"""
|
| 437 |
-
layout_results = parse_layout_string(layout_results)
|
| 438 |
-
text_elements = []
|
| 439 |
-
table_elements = []
|
| 440 |
-
figure_results = []
|
| 441 |
-
previous_box = None
|
| 442 |
-
reading_order = 0
|
| 443 |
-
for bbox, label in layout_results:
|
| 444 |
-
try:
|
| 445 |
-
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
|
| 446 |
-
bbox, padded_image, dims, previous_box
|
| 447 |
-
)
|
| 448 |
-
cropped = padded_image[y1:y2, x1:x2]
|
| 449 |
-
if cropped.size > 0 and (cropped.shape[0] > 3 and cropped.shape[1] > 3):
|
| 450 |
-
if label == "fig":
|
| 451 |
-
try:
|
| 452 |
-
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
| 453 |
-
buffered = io.BytesIO()
|
| 454 |
-
pil_crop.save(buffered, format="PNG")
|
| 455 |
-
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 456 |
-
figure_results.append(
|
| 457 |
-
{
|
| 458 |
-
"label": label,
|
| 459 |
-
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
| 460 |
-
"text": img_base64,
|
| 461 |
-
"reading_order": reading_order,
|
| 462 |
-
}
|
| 463 |
-
)
|
| 464 |
-
except Exception as e:
|
| 465 |
-
print(f"Error encoding figure to base64: {e}")
|
| 466 |
-
figure_results.append(
|
| 467 |
-
{
|
| 468 |
-
"label": label,
|
| 469 |
-
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
| 470 |
-
"text": "",
|
| 471 |
-
"reading_order": reading_order,
|
| 472 |
-
}
|
| 473 |
-
)
|
| 474 |
-
else:
|
| 475 |
-
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
| 476 |
-
element_info = {
|
| 477 |
-
"crop": pil_crop,
|
| 478 |
-
"label": label,
|
| 479 |
-
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
| 480 |
-
"reading_order": reading_order,
|
| 481 |
-
}
|
| 482 |
-
if label == "tab":
|
| 483 |
-
table_elements.append(element_info)
|
| 484 |
-
else:
|
| 485 |
-
text_elements.append(element_info)
|
| 486 |
-
reading_order += 1
|
| 487 |
-
except Exception as e:
|
| 488 |
-
print(f"Error processing bbox with label {label}: {str(e)}")
|
| 489 |
-
continue
|
| 490 |
-
recognition_results = figure_results.copy()
|
| 491 |
-
if text_elements:
|
| 492 |
-
text_results = process_element_batch_dolphin(text_elements, "Read text in the image.")
|
| 493 |
-
recognition_results.extend(text_results)
|
| 494 |
-
if table_elements:
|
| 495 |
-
table_results = process_element_batch_dolphin(table_elements, "Parse the table in the image.")
|
| 496 |
-
recognition_results.extend(table_results)
|
| 497 |
-
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
|
| 498 |
-
return recognition_results
|
| 499 |
-
|
| 500 |
-
def generate_markdown(recognition_results):
|
| 501 |
-
"""Generate markdown from recognition results for Dolphin model"""
|
| 502 |
-
converter = MarkdownConverter()
|
| 503 |
-
return converter.convert(recognition_results)
|
| 504 |
-
|
| 505 |
-
def convert_all_pdf_pages_to_images(file_path, target_size=896):
|
| 506 |
-
"""Convert all pages of a PDF to images for Dolphin model"""
|
| 507 |
-
if file_path is None:
|
| 508 |
-
return []
|
| 509 |
-
try:
|
| 510 |
-
file_ext = os.path.splitext(file_path)[1].lower()
|
| 511 |
-
if file_ext == '.pdf':
|
| 512 |
-
doc = pymupdf.open(file_path)
|
| 513 |
-
image_paths = []
|
| 514 |
-
for page_num in range(len(doc)):
|
| 515 |
-
page = doc[page_num]
|
| 516 |
-
rect = page.rect
|
| 517 |
-
scale = target_size / max(rect.width, rect.height)
|
| 518 |
-
mat = pymupdf.Matrix(scale, scale)
|
| 519 |
-
pix = page.get_pixmap(matrix=mat)
|
| 520 |
-
img_data = pix.tobytes("png")
|
| 521 |
-
pil_image = Image.open(io.BytesIO(img_data))
|
| 522 |
-
with tempfile.NamedTemporaryFile(suffix=f"_page_{page_num}.png", delete=False) as tmp_file:
|
| 523 |
-
pil_image.save(tmp_file.name, "PNG")
|
| 524 |
-
image_paths.append(tmp_file.name)
|
| 525 |
-
doc.close()
|
| 526 |
-
return image_paths
|
| 527 |
-
else:
|
| 528 |
-
converted_path = convert_to_image(file_path, target_size)
|
| 529 |
-
return [converted_path] if converted_path else []
|
| 530 |
-
except Exception as e:
|
| 531 |
-
print(f"Error converting PDF pages to images: {e}")
|
| 532 |
-
return []
|
| 533 |
-
|
| 534 |
-
def convert_to_image(file_path, target_size=896, page_num=0):
|
| 535 |
-
"""Convert input file to image format for Dolphin model"""
|
| 536 |
-
if file_path is None:
|
| 537 |
-
return None
|
| 538 |
-
try:
|
| 539 |
-
file_ext = os.path.splitext(file_path)[1].lower()
|
| 540 |
-
if file_ext == '.pdf':
|
| 541 |
-
doc = pymupdf.open(file_path)
|
| 542 |
-
if page_num >= len(doc):
|
| 543 |
-
page_num = 0
|
| 544 |
-
page = doc[page_num]
|
| 545 |
-
rect = page.rect
|
| 546 |
-
scale = target_size / max(rect.width, rect.height)
|
| 547 |
-
mat = pymupdf.Matrix(scale, scale)
|
| 548 |
-
pix = page.get_pixmap(matrix=mat)
|
| 549 |
-
img_data = pix.tobytes("png")
|
| 550 |
-
pil_image = Image.open(io.BytesIO(img_data))
|
| 551 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
|
| 552 |
-
pil_image.save(tmp_file.name, "PNG")
|
| 553 |
-
doc.close()
|
| 554 |
-
return tmp_file.name
|
| 555 |
-
else:
|
| 556 |
-
pil_image = Image.open(file_path).convert("RGB")
|
| 557 |
-
w, h = pil_image.size
|
| 558 |
-
if max(w, h) > target_size:
|
| 559 |
-
if w > h:
|
| 560 |
-
new_w, new_h = target_size, int(h * target_size / w)
|
| 561 |
-
else:
|
| 562 |
-
new_w, new_h = int(w * target_size / h), target_size
|
| 563 |
-
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 564 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
|
| 565 |
-
pil_image.save(tmp_file.name, "PNG")
|
| 566 |
-
return tmp_file.name
|
| 567 |
-
except Exception as e:
|
| 568 |
-
print(f"Error converting file to image: {e}")
|
| 569 |
-
return file_path
|
| 570 |
-
|
| 571 |
-
def process_all_pages_dolphin(file_path):
|
| 572 |
-
"""Process all pages of a document with Dolphin model"""
|
| 573 |
-
image_paths = convert_all_pdf_pages_to_images(file_path)
|
| 574 |
-
per_page_results = []
|
| 575 |
-
for image_path in image_paths:
|
| 576 |
-
try:
|
| 577 |
-
original_image = Image.open(image_path).convert('RGB')
|
| 578 |
-
recognition_results = process_page_dolphin(image_path)
|
| 579 |
-
markdown_content = generate_markdown(recognition_results)
|
| 580 |
-
placeholder_text = "Layout visualization not available for Dolphin model"
|
| 581 |
-
processed_image = create_placeholder_image(placeholder_text, size=(original_image.width, original_image.height))
|
| 582 |
-
per_page_results.append({
|
| 583 |
-
'original_image': original_image,
|
| 584 |
-
'processed_image': processed_image,
|
| 585 |
-
'markdown_content': markdown_content,
|
| 586 |
-
'layout_result': recognition_results
|
| 587 |
-
})
|
| 588 |
-
except Exception as e:
|
| 589 |
-
print(f"Error processing page: {e}")
|
| 590 |
-
per_page_results.append({
|
| 591 |
-
'original_image': Image.new('RGB', (100, 100), color='white'),
|
| 592 |
-
'processed_image': create_placeholder_image("Error processing page", size=(100, 100)),
|
| 593 |
-
'markdown_content': f"Error processing page: {str(e)}",
|
| 594 |
-
'layout_result': None
|
| 595 |
-
})
|
| 596 |
-
finally:
|
| 597 |
-
if os.path.exists(image_path):
|
| 598 |
-
os.remove(image_path)
|
| 599 |
-
return per_page_results
|
| 600 |
-
|
| 601 |
-
def create_placeholder_image(text, size=(400, 200)):
|
| 602 |
-
"""Create a placeholder image with text"""
|
| 603 |
-
img = Image.new('RGB', size, color='white')
|
| 604 |
-
draw = ImageDraw.Draw(img)
|
| 605 |
-
try:
|
| 606 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
|
| 607 |
-
except Exception:
|
| 608 |
-
font = ImageFont.load_default()
|
| 609 |
-
draw.text((10, 10), text, fill='black', font=font)
|
| 610 |
-
return img
|
| 611 |
|
| 612 |
-
# Gradio interface functions
|
| 613 |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
| 614 |
"""Load file for preview (supports PDF and images)"""
|
| 615 |
global pdf_cache
|
|
|
|
| 616 |
if not file_path or not os.path.exists(file_path):
|
| 617 |
return None, "No file selected"
|
| 618 |
-
|
|
|
|
|
|
|
| 619 |
try:
|
| 620 |
if file_ext == '.pdf':
|
|
|
|
| 621 |
images = load_images_from_pdf(file_path)
|
| 622 |
if not images:
|
| 623 |
return None, "Failed to load PDF"
|
|
|
|
| 624 |
pdf_cache.update({
|
| 625 |
"images": images,
|
| 626 |
"current_page": 0,
|
|
@@ -629,9 +525,13 @@ def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
|
| 629 |
"is_parsed": False,
|
| 630 |
"results": []
|
| 631 |
})
|
| 632 |
-
|
|
|
|
|
|
|
| 633 |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
|
|
|
| 634 |
image = Image.open(file_path).convert('RGB')
|
|
|
|
| 635 |
pdf_cache.update({
|
| 636 |
"images": [image],
|
| 637 |
"current_page": 0,
|
|
@@ -640,78 +540,73 @@ def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
|
| 640 |
"is_parsed": False,
|
| 641 |
"results": []
|
| 642 |
})
|
|
|
|
| 643 |
return image, "Page 1 / 1"
|
| 644 |
else:
|
| 645 |
return None, f"Unsupported file format: {file_ext}"
|
|
|
|
| 646 |
except Exception as e:
|
| 647 |
print(f"Error loading file: {e}")
|
| 648 |
return None, f"Error loading file: {str(e)}"
|
| 649 |
|
| 650 |
-
|
|
|
|
| 651 |
"""Navigate through PDF pages and update all relevant outputs."""
|
| 652 |
global pdf_cache
|
|
|
|
| 653 |
if not pdf_cache["images"]:
|
| 654 |
-
return None, "No file loaded
|
|
|
|
| 655 |
if direction == "prev":
|
| 656 |
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
|
| 657 |
elif direction == "next":
|
| 658 |
-
pdf_cache["current_page"] = min(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 659 |
index = pdf_cache["current_page"]
|
| 660 |
current_image_preview = pdf_cache["images"][index]
|
| 661 |
-
page_info_html = f"Page {index + 1} / {pdf_cache[
|
| 662 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 663 |
result = pdf_cache["results"][index]
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
layout_json = result
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
else:
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
return current_image_preview, page_info_html, markdown_content, processed_img, layout_json
|
| 672 |
|
| 673 |
-
def process_document(model_choice, file_path, max_tokens, min_pix, max_pix):
|
| 674 |
-
"""Process the uploaded document with the selected model"""
|
| 675 |
-
global pdf_cache
|
| 676 |
-
try:
|
| 677 |
-
if not file_path:
|
| 678 |
-
return None, "Please upload a file first.", None
|
| 679 |
-
if model_choice == "dot.ocr":
|
| 680 |
-
results = process_all_pages_dot_ocr(file_path, min_pix, max_pix)
|
| 681 |
-
elif model_choice == "Dolphin":
|
| 682 |
-
results = process_all_pages_dolphin(file_path)
|
| 683 |
-
else:
|
| 684 |
-
raise ValueError("Invalid model choice")
|
| 685 |
-
pdf_cache["results"] = results
|
| 686 |
-
pdf_cache["is_parsed"] = True
|
| 687 |
-
first_result = results[0]
|
| 688 |
-
if model_choice == "dot.ocr":
|
| 689 |
-
processed_img = first_result['processed_image']
|
| 690 |
-
markdown_content = first_result['markdown_content']
|
| 691 |
-
layout_json = first_result['layout_result']
|
| 692 |
-
else:
|
| 693 |
-
processed_img = first_result['processed_image']
|
| 694 |
-
markdown_content = first_result['markdown_content']
|
| 695 |
-
layout_json = first_result['layout_result']
|
| 696 |
-
return processed_img, markdown_content, layout_json
|
| 697 |
-
except Exception as e:
|
| 698 |
-
error_msg = f"Error processing document: {str(e)}"
|
| 699 |
-
print(error_msg)
|
| 700 |
-
return None, error_msg, None
|
| 701 |
|
| 702 |
def create_gradio_interface():
|
| 703 |
"""Create the Gradio interface"""
|
|
|
|
| 704 |
css = """
|
| 705 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 706 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
| 707 |
-
.process-button {
|
| 708 |
-
border: none !important;
|
| 709 |
-
color: white !important;
|
| 710 |
-
font-weight: bold !important;
|
| 711 |
-
background-color: blue !important;}
|
| 712 |
-
.process-button:hover {
|
| 713 |
background-color: darkblue !important;
|
| 714 |
-
transform: translateY(-2px) !important;
|
| 715 |
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
| 716 |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
|
| 717 |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
|
|
@@ -727,34 +622,41 @@ def create_gradio_interface():
|
|
| 727 |
</p>
|
| 728 |
</div>
|
| 729 |
""")
|
|
|
|
|
|
|
| 730 |
with gr.Row():
|
|
|
|
| 731 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
| 732 |
model_choice = gr.Radio(
|
| 733 |
-
choices=["
|
| 734 |
label="Select Model",
|
| 735 |
-
value="
|
| 736 |
)
|
|
|
|
|
|
|
| 737 |
file_input = gr.File(
|
| 738 |
label="Upload Image or PDF",
|
| 739 |
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
|
| 740 |
type="filepath"
|
| 741 |
)
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
|
| 745 |
-
inputs=file_input,
|
| 746 |
-
label="Example Documents"
|
| 747 |
-
)
|
| 748 |
image_preview = gr.Image(
|
| 749 |
label="Preview",
|
| 750 |
type="pil",
|
| 751 |
interactive=False,
|
| 752 |
height=300
|
| 753 |
)
|
|
|
|
|
|
|
| 754 |
with gr.Row():
|
| 755 |
prev_page_btn = gr.Button("◀ Previous", size="md")
|
| 756 |
-
page_info = gr.HTML("No file loaded
|
| 757 |
next_page_btn = gr.Button("Next ▶", size="md")
|
|
|
|
|
|
|
| 758 |
with gr.Accordion("Advanced Settings", open=False):
|
| 759 |
max_new_tokens = gr.Slider(
|
| 760 |
minimum=1000,
|
|
@@ -764,25 +666,36 @@ def create_gradio_interface():
|
|
| 764 |
label="Max New Tokens",
|
| 765 |
info="Maximum number of tokens to generate"
|
| 766 |
)
|
|
|
|
| 767 |
min_pixels = gr.Number(
|
| 768 |
value=MIN_PIXELS,
|
| 769 |
label="Min Pixels",
|
| 770 |
info="Minimum image resolution"
|
| 771 |
)
|
|
|
|
| 772 |
max_pixels = gr.Number(
|
| 773 |
value=MAX_PIXELS,
|
| 774 |
-
label="Max Pixels",
|
| 775 |
info="Maximum image resolution"
|
| 776 |
)
|
|
|
|
|
|
|
| 777 |
process_btn = gr.Button(
|
| 778 |
"🚀 Process Document",
|
| 779 |
variant="primary",
|
| 780 |
elem_classes=["process-button"],
|
| 781 |
size="lg"
|
| 782 |
)
|
|
|
|
|
|
|
| 783 |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
|
|
|
|
|
|
| 784 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
| 785 |
with gr.Tabs():
|
|
|
|
| 786 |
with gr.Tab("🖼️ Processed Image"):
|
| 787 |
processed_image = gr.Image(
|
| 788 |
label="Image with Layout Detection",
|
|
@@ -790,11 +703,13 @@ def create_gradio_interface():
|
|
| 790 |
interactive=False,
|
| 791 |
height=500
|
| 792 |
)
|
|
|
|
| 793 |
with gr.Tab("📝 Extracted Content"):
|
| 794 |
markdown_output = gr.Markdown(
|
| 795 |
value="Click 'Process Document' to see extracted content...",
|
| 796 |
height=500
|
| 797 |
)
|
|
|
|
| 798 |
with gr.Tab("📋 Layout JSON"):
|
| 799 |
json_output = gr.JSON(
|
| 800 |
label="Layout Analysis Results",
|
|
@@ -802,8 +717,114 @@ def create_gradio_interface():
|
|
| 802 |
)
|
| 803 |
|
| 804 |
# Event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 805 |
file_input.change(
|
| 806 |
-
|
| 807 |
inputs=[file_input],
|
| 808 |
outputs=[image_preview, page_info]
|
| 809 |
)
|
|
@@ -825,12 +846,23 @@ def create_gradio_interface():
|
|
| 825 |
)
|
| 826 |
|
| 827 |
clear_btn.click(
|
| 828 |
-
|
| 829 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
| 830 |
)
|
| 831 |
|
| 832 |
return demo
|
| 833 |
|
|
|
|
| 834 |
if __name__ == "__main__":
|
|
|
|
| 835 |
demo = create_gradio_interface()
|
| 836 |
-
demo.queue(max_size=10).launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import json
|
| 3 |
+
import math
|
| 4 |
import os
|
| 5 |
+
import traceback
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 8 |
+
import re
|
| 9 |
+
|
| 10 |
+
import fitz
|
| 11 |
import gradio as gr
|
| 12 |
+
import requests
|
|
|
|
| 13 |
import torch
|
|
|
|
|
|
|
| 14 |
from huggingface_hub import snapshot_download
|
| 15 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 16 |
+
from transformers import (
|
| 17 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 18 |
+
AutoProcessor,
|
| 19 |
+
TextIteratorStreamer,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
+
from qwen_vl_utils import process_vision_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Constants
|
| 24 |
MIN_PIXELS = 3136
|
| 25 |
MAX_PIXELS = 11289600
|
| 26 |
IMAGE_FACTOR = 28
|
| 27 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
|
| 29 |
# Prompts
|
| 30 |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
|
|
|
| 46 |
5. Final Output: The entire output must be a single JSON object.
|
| 47 |
"""
|
| 48 |
|
| 49 |
+
# Load Camel-Doc-OCR-062825
|
| 50 |
+
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
|
| 51 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 52 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 53 |
+
MODEL_ID_M,
|
| 54 |
+
trust_remote_code=True,
|
| 55 |
+
torch_dtype=torch.float16
|
| 56 |
+
).to(device).eval()
|
| 57 |
+
|
| 58 |
+
# Load Megalodon-OCR-Sync-0713
|
| 59 |
+
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
|
| 60 |
+
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
| 61 |
+
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 62 |
+
MODEL_ID_T,
|
| 63 |
+
trust_remote_code=True,
|
| 64 |
+
torch_dtype=torch.float16
|
| 65 |
+
).to(device).eval()
|
| 66 |
+
|
| 67 |
+
# Load Nanonets-OCR-s
|
| 68 |
+
MODEL_ID_C = "nanonets/Nanonets-OCR-s"
|
| 69 |
+
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
|
| 70 |
+
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 71 |
+
MODEL_ID_C,
|
| 72 |
+
trust_remote_code=True,
|
| 73 |
+
torch_dtype=torch.float16
|
| 74 |
+
).to(device).eval()
|
| 75 |
+
|
| 76 |
+
# Load MonkeyOCR
|
| 77 |
+
MODEL_ID_G = "echo840/MonkeyOCR"
|
| 78 |
+
SUBFOLDER = "Recognition"
|
| 79 |
+
processor_g = AutoProcessor.from_pretrained(
|
| 80 |
+
MODEL_ID_G,
|
| 81 |
+
trust_remote_code=True,
|
| 82 |
+
subfolder=SUBFOLDER
|
| 83 |
+
)
|
| 84 |
+
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 85 |
+
MODEL_ID_G,
|
| 86 |
+
trust_remote_code=True,
|
| 87 |
+
subfolder=SUBFOLDER,
|
| 88 |
+
torch_dtype=torch.float16
|
| 89 |
+
).to(device).eval()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
# Utility functions
|
| 93 |
def round_by_factor(number: int, factor: int) -> int:
|
| 94 |
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 95 |
return round(number / factor) * factor
|
| 96 |
|
| 97 |
+
|
| 98 |
def smart_resize(
|
| 99 |
height: int,
|
| 100 |
width: int,
|
|
|
|
| 124 |
w_bar = round_by_factor(width * beta, factor)
|
| 125 |
return h_bar, w_bar
|
| 126 |
|
| 127 |
+
|
| 128 |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
| 129 |
"""Fetch and process an image"""
|
| 130 |
if isinstance(image_input, str):
|
|
|
|
| 137 |
image = image_input.convert('RGB')
|
| 138 |
else:
|
| 139 |
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
| 140 |
+
|
| 141 |
if min_pixels is not None or max_pixels is not None:
|
| 142 |
min_pixels = min_pixels or MIN_PIXELS
|
| 143 |
max_pixels = max_pixels or MAX_PIXELS
|
| 144 |
height, width = smart_resize(
|
| 145 |
+
image.height,
|
| 146 |
+
image.width,
|
| 147 |
factor=IMAGE_FACTOR,
|
| 148 |
min_pixels=min_pixels,
|
| 149 |
max_pixels=max_pixels
|
| 150 |
)
|
| 151 |
image = image.resize((width, height), Image.LANCZOS)
|
| 152 |
+
|
| 153 |
return image
|
| 154 |
|
| 155 |
+
|
| 156 |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
| 157 |
"""Load images from PDF file"""
|
| 158 |
images = []
|
| 159 |
try:
|
| 160 |
+
pdf_document = fitz.open(pdf_path)
|
| 161 |
for page_num in range(len(pdf_document)):
|
| 162 |
page = pdf_document.load_page(page_num)
|
| 163 |
+
# Convert page to image
|
| 164 |
+
mat = fitz.Matrix(2.0, 2.0) # Increase resolution
|
| 165 |
pix = page.get_pixmap(matrix=mat)
|
| 166 |
img_data = pix.tobytes("ppm")
|
| 167 |
image = Image.open(BytesIO(img_data)).convert('RGB')
|
|
|
|
| 172 |
return []
|
| 173 |
return images
|
| 174 |
|
| 175 |
+
|
| 176 |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
| 177 |
"""Draw layout bounding boxes on image"""
|
| 178 |
img_copy = image.copy()
|
| 179 |
draw = ImageDraw.Draw(img_copy)
|
| 180 |
+
|
| 181 |
+
# Colors for different categories
|
| 182 |
colors = {
|
| 183 |
'Caption': '#FF6B6B',
|
| 184 |
+
'Footnote': '#4ECDC4',
|
| 185 |
'Formula': '#45B7D1',
|
| 186 |
'List-item': '#96CEB4',
|
| 187 |
'Page-footer': '#FFEAA7',
|
|
|
|
| 192 |
'Text': '#74B9FF',
|
| 193 |
'Title': '#E17055'
|
| 194 |
}
|
| 195 |
+
|
| 196 |
try:
|
| 197 |
+
# Load a font
|
| 198 |
+
try:
|
| 199 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
|
| 200 |
+
except Exception:
|
| 201 |
+
font = ImageFont.load_default()
|
| 202 |
+
|
| 203 |
+
for item in layout_data:
|
| 204 |
+
if 'bbox' in item and 'category' in item:
|
| 205 |
+
bbox = item['bbox']
|
| 206 |
+
category = item['category']
|
| 207 |
+
color = colors.get(category, '#000000')
|
| 208 |
+
|
| 209 |
+
# Draw rectangle
|
| 210 |
+
draw.rectangle(bbox, outline=color, width=2)
|
| 211 |
+
|
| 212 |
+
# Draw label
|
| 213 |
+
label = category
|
| 214 |
+
label_bbox = draw.textbbox((0, 0), label, font=font)
|
| 215 |
+
label_width = label_bbox[2] - label_bbox[0]
|
| 216 |
+
label_height = label_bbox[3] - label_bbox[1]
|
| 217 |
+
|
| 218 |
+
# Position label above the box
|
| 219 |
+
label_x = bbox[0]
|
| 220 |
+
label_y = max(0, bbox[1] - label_height - 2)
|
| 221 |
+
|
| 222 |
+
# Draw background for label
|
| 223 |
+
draw.rectangle(
|
| 224 |
+
[label_x, label_y, label_x + label_width + 4, label_y + label_height + 2],
|
| 225 |
+
fill=color
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# Draw text
|
| 229 |
+
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"Error drawing layout: {e}")
|
| 233 |
+
|
| 234 |
return img_copy
|
| 235 |
|
| 236 |
+
|
| 237 |
+
def is_arabic_text(text: str) -> bool:
|
| 238 |
+
"""Check if text in headers and paragraphs contains mostly Arabic characters"""
|
| 239 |
+
if not text:
|
| 240 |
+
return False
|
| 241 |
+
|
| 242 |
+
# Extract text from headers and paragraphs only
|
| 243 |
+
# Match markdown headers (# ## ###) and regular paragraph text
|
| 244 |
+
header_pattern = r'^#{1,6}\s+(.+)$'
|
| 245 |
+
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
|
| 246 |
+
|
| 247 |
+
content_text = []
|
| 248 |
+
|
| 249 |
+
for line in text.split('\n'):
|
| 250 |
+
line = line.strip()
|
| 251 |
+
if not line:
|
| 252 |
+
continue
|
| 253 |
+
|
| 254 |
+
# Check for headers
|
| 255 |
+
header_match = re.match(header_pattern, line, re.MULTILINE)
|
| 256 |
+
if header_match:
|
| 257 |
+
content_text.append(header_match.group(1))
|
| 258 |
+
continue
|
| 259 |
+
|
| 260 |
+
# Check for paragraph text (exclude lists, tables, code blocks, images)
|
| 261 |
+
if re.match(paragraph_pattern, line, re.MULTILINE):
|
| 262 |
+
content_text.append(line)
|
| 263 |
+
|
| 264 |
+
if not content_text:
|
| 265 |
+
return False
|
| 266 |
+
|
| 267 |
+
# Join all content text and check for Arabic characters
|
| 268 |
+
combined_text = ' '.join(content_text)
|
| 269 |
+
|
| 270 |
+
# Arabic Unicode ranges
|
| 271 |
+
arabic_chars = 0
|
| 272 |
+
total_chars = 0
|
| 273 |
+
|
| 274 |
+
for char in combined_text:
|
| 275 |
+
if char.isalpha():
|
| 276 |
+
total_chars += 1
|
| 277 |
+
# Arabic script ranges
|
| 278 |
+
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
|
| 279 |
+
arabic_chars += 1
|
| 280 |
+
|
| 281 |
+
if total_chars == 0:
|
| 282 |
+
return False
|
| 283 |
+
|
| 284 |
+
# Consider text as Arabic if more than 50% of alphabetic characters are Arabic
|
| 285 |
+
return (arabic_chars / total_chars) > 0.5
|
| 286 |
+
|
| 287 |
+
|
| 288 |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
| 289 |
"""Convert layout JSON to markdown format"""
|
| 290 |
import base64
|
| 291 |
from io import BytesIO
|
| 292 |
+
|
| 293 |
markdown_lines = []
|
| 294 |
+
|
| 295 |
try:
|
| 296 |
+
# Sort items by reading order (top to bottom, left to right)
|
| 297 |
+
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox',), x.get('bbox',)))
|
| 298 |
+
|
| 299 |
for item in sorted_items:
|
| 300 |
category = item.get('category', '')
|
| 301 |
text = item.get(text_key, '')
|
| 302 |
bbox = item.get('bbox', [])
|
| 303 |
+
|
| 304 |
if category == 'Picture':
|
| 305 |
+
# Extract image region and embed it
|
| 306 |
if bbox and len(bbox) == 4:
|
| 307 |
try:
|
| 308 |
+
# Extract the image region
|
| 309 |
x1, y1, x2, y2 = bbox
|
| 310 |
+
# Ensure coordinates are within image bounds
|
| 311 |
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
| 312 |
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
|
| 313 |
+
|
| 314 |
if x2 > x1 and y2 > y1:
|
| 315 |
cropped_img = image.crop((x1, y1, x2, y2))
|
| 316 |
+
|
| 317 |
+
# Convert to base64 for embedding
|
| 318 |
buffer = BytesIO()
|
| 319 |
cropped_img.save(buffer, format='PNG')
|
| 320 |
img_data = base64.b64encode(buffer.getvalue()).decode()
|
| 321 |
+
|
| 322 |
+
# Add as markdown image
|
| 323 |
markdown_lines.append(f"\n")
|
| 324 |
else:
|
| 325 |
markdown_lines.append("\n")
|
|
|
|
| 339 |
elif category == 'List-item':
|
| 340 |
markdown_lines.append(f"- {text}\n")
|
| 341 |
elif category == 'Table':
|
| 342 |
+
# If text is already HTML, keep it as is
|
| 343 |
if text.strip().startswith('<'):
|
| 344 |
markdown_lines.append(f"{text}\n")
|
| 345 |
else:
|
| 346 |
markdown_lines.append(f"**Table:** {text}\n")
|
| 347 |
elif category == 'Formula':
|
| 348 |
+
# If text is LaTeX, format it properly
|
| 349 |
if text.strip().startswith('$') or '\\' in text:
|
| 350 |
markdown_lines.append(f"$$\n{text}\n$$\n")
|
| 351 |
else:
|
|
|
|
| 355 |
elif category == 'Footnote':
|
| 356 |
markdown_lines.append(f"^{text}^\n")
|
| 357 |
elif category in ['Page-header', 'Page-footer']:
|
| 358 |
+
# Skip headers and footers in main content
|
| 359 |
continue
|
| 360 |
else:
|
| 361 |
markdown_lines.append(f"{text}\n")
|
| 362 |
+
|
| 363 |
+
markdown_lines.append("") # Add spacing
|
| 364 |
+
|
| 365 |
except Exception as e:
|
| 366 |
print(f"Error converting to markdown: {e}")
|
| 367 |
return str(layout_data)
|
| 368 |
+
|
| 369 |
return "\n".join(markdown_lines)
|
| 370 |
|
| 371 |
+
|
| 372 |
+
# PDF handling state
|
| 373 |
pdf_cache = {
|
| 374 |
"images": [],
|
| 375 |
"current_page": 0,
|
|
|
|
| 378 |
"is_parsed": False,
|
| 379 |
"results": []
|
| 380 |
}
|
| 381 |
+
@spaces.GPU
|
| 382 |
+
def inference(model_name: str, image: Image.Image, prompt: str, max_new_tokens: int = 1024) -> str:
|
| 383 |
+
"""Run inference on an image with the given prompt using the selected model."""
|
|
|
|
| 384 |
try:
|
| 385 |
+
if model_name == "Camel-Doc-OCR-062825":
|
| 386 |
+
processor = processor_m
|
| 387 |
+
model = model_m
|
| 388 |
+
elif model_name == "Megalodon-OCR-Sync-0713":
|
| 389 |
+
processor = processor_t
|
| 390 |
+
model = model_t
|
| 391 |
+
elif model_name == "Nanonets-OCR-s":
|
| 392 |
+
processor = processor_c
|
| 393 |
+
model = model_c
|
| 394 |
+
elif model_name == "MonkeyOCR-Recognition":
|
| 395 |
+
processor = processor_g
|
| 396 |
+
model = model_g
|
| 397 |
+
else:
|
| 398 |
+
raise ValueError(f"Invalid model selected: {model_name}")
|
| 399 |
+
|
| 400 |
messages = [
|
| 401 |
{
|
| 402 |
"role": "user",
|
| 403 |
"content": [
|
| 404 |
+
{"type": "text", "text": prompt},
|
| 405 |
+
{"type": "image"}
|
| 406 |
]
|
| 407 |
}
|
| 408 |
]
|
| 409 |
+
|
| 410 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 411 |
+
inputs = processor(text, [image], return_tensors="pt").to(device)
|
| 412 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
with torch.no_grad():
|
| 414 |
+
generated_ids = model.generate(
|
| 415 |
**inputs,
|
| 416 |
max_new_tokens=max_new_tokens,
|
| 417 |
do_sample=False,
|
| 418 |
temperature=0.1
|
| 419 |
)
|
| 420 |
+
|
| 421 |
+
generated_ids = [
|
| 422 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 423 |
]
|
| 424 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 425 |
+
return output_text
|
| 426 |
+
|
|
|
|
|
|
|
|
|
|
| 427 |
except Exception as e:
|
| 428 |
+
print(f"Error during inference: {e}")
|
| 429 |
+
traceback.print_exc()
|
| 430 |
return f"Error during inference: {str(e)}"
|
| 431 |
|
| 432 |
+
|
| 433 |
+
def process_image(
|
| 434 |
+
model_name: str,
|
| 435 |
+
image: Image.Image,
|
| 436 |
+
min_pixels: Optional[int] = None,
|
| 437 |
+
max_pixels: Optional[int] = None
|
| 438 |
+
) -> Dict[str, Any]:
|
| 439 |
+
"""Process a single image with the specified prompt mode"""
|
| 440 |
try:
|
| 441 |
+
# Resize image if needed
|
| 442 |
if min_pixels is not None or max_pixels is not None:
|
| 443 |
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
| 444 |
+
|
| 445 |
+
# Run inference with the default prompt
|
| 446 |
+
raw_output = inference(model_name, image, prompt)
|
| 447 |
+
|
| 448 |
+
# Process results based on prompt mode
|
| 449 |
result = {
|
| 450 |
'original_image': image,
|
| 451 |
'raw_output': raw_output,
|
|
|
|
| 453 |
'layout_result': None,
|
| 454 |
'markdown_content': None
|
| 455 |
}
|
| 456 |
+
|
| 457 |
+
# Try to parse JSON and create visualizations (since we're doing layout analysis)
|
| 458 |
try:
|
| 459 |
+
# Clean the output to be valid JSON
|
| 460 |
+
# Models sometimes add ```json ... ``` markers
|
| 461 |
+
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', raw_output)
|
| 462 |
+
if json_match:
|
| 463 |
+
json_str = json_match.group(1)
|
| 464 |
+
else:
|
| 465 |
+
json_str = raw_output
|
| 466 |
+
|
| 467 |
+
layout_data = json.loads(json_str)
|
| 468 |
result['layout_result'] = layout_data
|
| 469 |
+
|
| 470 |
+
# Create visualization with bounding boxes
|
| 471 |
+
try:
|
| 472 |
+
processed_image = draw_layout_on_image(image, layout_data)
|
| 473 |
+
result['processed_image'] = processed_image
|
| 474 |
+
except Exception as e:
|
| 475 |
+
print(f"Error drawing layout: {e}")
|
| 476 |
+
result['processed_image'] = image
|
| 477 |
+
|
| 478 |
+
# Generate markdown from layout data
|
| 479 |
+
try:
|
| 480 |
+
markdown_content = layoutjson2md(image, layout_data, text_key='text')
|
| 481 |
+
result['markdown_content'] = markdown_content
|
| 482 |
+
except Exception as e:
|
| 483 |
+
print(f"Error generating markdown: {e}")
|
| 484 |
+
result['markdown_content'] = raw_output
|
| 485 |
+
|
| 486 |
except json.JSONDecodeError:
|
| 487 |
print("Failed to parse JSON output, using raw output")
|
| 488 |
result['markdown_content'] = raw_output
|
| 489 |
+
|
| 490 |
return result
|
| 491 |
+
|
| 492 |
except Exception as e:
|
| 493 |
+
print(f"Error processing image: {e}")
|
| 494 |
+
traceback.print_exc()
|
| 495 |
return {
|
| 496 |
'original_image': image,
|
| 497 |
'raw_output': f"Error processing image: {str(e)}",
|
|
|
|
| 500 |
'markdown_content': f"Error processing image: {str(e)}"
|
| 501 |
}
|
| 502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
|
|
|
|
| 504 |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
| 505 |
"""Load file for preview (supports PDF and images)"""
|
| 506 |
global pdf_cache
|
| 507 |
+
|
| 508 |
if not file_path or not os.path.exists(file_path):
|
| 509 |
return None, "No file selected"
|
| 510 |
+
|
| 511 |
+
file_ext = os.path.splitext(file_path).lower()
|
| 512 |
+
|
| 513 |
try:
|
| 514 |
if file_ext == '.pdf':
|
| 515 |
+
# Load PDF pages
|
| 516 |
images = load_images_from_pdf(file_path)
|
| 517 |
if not images:
|
| 518 |
return None, "Failed to load PDF"
|
| 519 |
+
|
| 520 |
pdf_cache.update({
|
| 521 |
"images": images,
|
| 522 |
"current_page": 0,
|
|
|
|
| 525 |
"is_parsed": False,
|
| 526 |
"results": []
|
| 527 |
})
|
| 528 |
+
|
| 529 |
+
return images, f"Page 1 / {len(images)}"
|
| 530 |
+
|
| 531 |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
| 532 |
+
# Load single image
|
| 533 |
image = Image.open(file_path).convert('RGB')
|
| 534 |
+
|
| 535 |
pdf_cache.update({
|
| 536 |
"images": [image],
|
| 537 |
"current_page": 0,
|
|
|
|
| 540 |
"is_parsed": False,
|
| 541 |
"results": []
|
| 542 |
})
|
| 543 |
+
|
| 544 |
return image, "Page 1 / 1"
|
| 545 |
else:
|
| 546 |
return None, f"Unsupported file format: {file_ext}"
|
| 547 |
+
|
| 548 |
except Exception as e:
|
| 549 |
print(f"Error loading file: {e}")
|
| 550 |
return None, f"Error loading file: {str(e)}"
|
| 551 |
|
| 552 |
+
|
| 553 |
+
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
|
| 554 |
"""Navigate through PDF pages and update all relevant outputs."""
|
| 555 |
global pdf_cache
|
| 556 |
+
|
| 557 |
if not pdf_cache["images"]:
|
| 558 |
+
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
|
| 559 |
+
|
| 560 |
if direction == "prev":
|
| 561 |
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
|
| 562 |
elif direction == "next":
|
| 563 |
+
pdf_cache["current_page"] = min(
|
| 564 |
+
pdf_cache["total_pages"] - 1,
|
| 565 |
+
pdf_cache["current_page"] + 1
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
index = pdf_cache["current_page"]
|
| 569 |
current_image_preview = pdf_cache["images"][index]
|
| 570 |
+
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
|
| 571 |
+
|
| 572 |
+
# Initialize default result values
|
| 573 |
+
markdown_content = "Page not processed yet"
|
| 574 |
+
processed_img = None
|
| 575 |
+
layout_json = None
|
| 576 |
+
|
| 577 |
+
# Get results for current page if available
|
| 578 |
+
if (pdf_cache["is_parsed"] and
|
| 579 |
+
index < len(pdf_cache["results"]) and
|
| 580 |
+
pdf_cache["results"][index]):
|
| 581 |
+
|
| 582 |
result = pdf_cache["results"][index]
|
| 583 |
+
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
|
| 584 |
+
processed_img = result.get('processed_image', None) # Get the processed image
|
| 585 |
+
layout_json = result.get('layout_result', None) # Get the layout JSON
|
| 586 |
+
|
| 587 |
+
# Check for Arabic text to set RTL property
|
| 588 |
+
if is_arabic_text(markdown_content):
|
| 589 |
+
markdown_update = gr.update(value=markdown_content, rtl=True)
|
| 590 |
else:
|
| 591 |
+
markdown_update = markdown_content
|
| 592 |
+
|
| 593 |
+
return current_image_preview, page_info_html, markdown_update, processed_img, layout_json
|
|
|
|
| 594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 595 |
|
| 596 |
def create_gradio_interface():
|
| 597 |
"""Create the Gradio interface"""
|
| 598 |
+
|
| 599 |
css = """
|
| 600 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 601 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
| 602 |
+
.process-button {
|
| 603 |
+
border: none !important;
|
| 604 |
+
color: white !important;
|
| 605 |
+
font-weight: bold !important;
|
| 606 |
+
background-color: blue !important;}
|
| 607 |
+
.process-button:hover {
|
| 608 |
background-color: darkblue !important;
|
| 609 |
+
transform: translateY(-2px) !important;
|
| 610 |
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
| 611 |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
|
| 612 |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
|
|
|
|
| 622 |
</p>
|
| 623 |
</div>
|
| 624 |
""")
|
| 625 |
+
|
| 626 |
+
# Main interface
|
| 627 |
with gr.Row():
|
| 628 |
+
# Left column - Input and controls
|
| 629 |
with gr.Column(scale=1):
|
| 630 |
+
|
| 631 |
+
# Model selection
|
| 632 |
model_choice = gr.Radio(
|
| 633 |
+
choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"],
|
| 634 |
label="Select Model",
|
| 635 |
+
value="Camel-Doc-OCR-062825"
|
| 636 |
)
|
| 637 |
+
|
| 638 |
+
# File input
|
| 639 |
file_input = gr.File(
|
| 640 |
label="Upload Image or PDF",
|
| 641 |
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
|
| 642 |
type="filepath"
|
| 643 |
)
|
| 644 |
+
|
| 645 |
+
# Image preview
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
image_preview = gr.Image(
|
| 647 |
label="Preview",
|
| 648 |
type="pil",
|
| 649 |
interactive=False,
|
| 650 |
height=300
|
| 651 |
)
|
| 652 |
+
|
| 653 |
+
# Page navigation for PDFs
|
| 654 |
with gr.Row():
|
| 655 |
prev_page_btn = gr.Button("◀ Previous", size="md")
|
| 656 |
+
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
| 657 |
next_page_btn = gr.Button("Next ▶", size="md")
|
| 658 |
+
|
| 659 |
+
# Advanced settings
|
| 660 |
with gr.Accordion("Advanced Settings", open=False):
|
| 661 |
max_new_tokens = gr.Slider(
|
| 662 |
minimum=1000,
|
|
|
|
| 666 |
label="Max New Tokens",
|
| 667 |
info="Maximum number of tokens to generate"
|
| 668 |
)
|
| 669 |
+
|
| 670 |
min_pixels = gr.Number(
|
| 671 |
value=MIN_PIXELS,
|
| 672 |
label="Min Pixels",
|
| 673 |
info="Minimum image resolution"
|
| 674 |
)
|
| 675 |
+
|
| 676 |
max_pixels = gr.Number(
|
| 677 |
value=MAX_PIXELS,
|
| 678 |
+
label="Max Pixels",
|
| 679 |
info="Maximum image resolution"
|
| 680 |
)
|
| 681 |
+
|
| 682 |
+
# Process button
|
| 683 |
process_btn = gr.Button(
|
| 684 |
"🚀 Process Document",
|
| 685 |
variant="primary",
|
| 686 |
elem_classes=["process-button"],
|
| 687 |
size="lg"
|
| 688 |
)
|
| 689 |
+
|
| 690 |
+
# Clear button
|
| 691 |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
| 692 |
+
|
| 693 |
+
# Right column - Results
|
| 694 |
with gr.Column(scale=2):
|
| 695 |
+
|
| 696 |
+
# Results tabs
|
| 697 |
with gr.Tabs():
|
| 698 |
+
# Processed image tab
|
| 699 |
with gr.Tab("🖼️ Processed Image"):
|
| 700 |
processed_image = gr.Image(
|
| 701 |
label="Image with Layout Detection",
|
|
|
|
| 703 |
interactive=False,
|
| 704 |
height=500
|
| 705 |
)
|
| 706 |
+
# Markdown output tab
|
| 707 |
with gr.Tab("📝 Extracted Content"):
|
| 708 |
markdown_output = gr.Markdown(
|
| 709 |
value="Click 'Process Document' to see extracted content...",
|
| 710 |
height=500
|
| 711 |
)
|
| 712 |
+
# JSON layout tab
|
| 713 |
with gr.Tab("📋 Layout JSON"):
|
| 714 |
json_output = gr.JSON(
|
| 715 |
label="Layout Analysis Results",
|
|
|
|
| 717 |
)
|
| 718 |
|
| 719 |
# Event handlers
|
| 720 |
+
def process_document(model_name, file_path, max_tokens, min_pix, max_pix):
|
| 721 |
+
"""Process the uploaded document"""
|
| 722 |
+
global pdf_cache
|
| 723 |
+
|
| 724 |
+
try:
|
| 725 |
+
if not file_path:
|
| 726 |
+
return None, "Please upload a file first.", None
|
| 727 |
+
|
| 728 |
+
# Load and preview file
|
| 729 |
+
image, page_info = load_file_for_preview(file_path)
|
| 730 |
+
if image is None:
|
| 731 |
+
return None, page_info, None
|
| 732 |
+
|
| 733 |
+
# Process the image(s)
|
| 734 |
+
if pdf_cache["file_type"] == "pdf":
|
| 735 |
+
# Process all pages for PDF
|
| 736 |
+
all_results = []
|
| 737 |
+
all_markdown = []
|
| 738 |
+
|
| 739 |
+
for i, img in enumerate(pdf_cache["images"]):
|
| 740 |
+
result = process_image(
|
| 741 |
+
model_name,
|
| 742 |
+
img,
|
| 743 |
+
min_pixels=int(min_pix) if min_pix else None,
|
| 744 |
+
max_pixels=int(max_pix) if max_pix else None
|
| 745 |
+
)
|
| 746 |
+
all_results.append(result)
|
| 747 |
+
if result.get('markdown_content'):
|
| 748 |
+
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
|
| 749 |
+
|
| 750 |
+
pdf_cache["results"] = all_results
|
| 751 |
+
pdf_cache["is_parsed"] = True
|
| 752 |
+
|
| 753 |
+
# Show results for first page
|
| 754 |
+
first_result = all_results
|
| 755 |
+
combined_markdown = "\n\n---\n\n".join(all_markdown)
|
| 756 |
+
|
| 757 |
+
# Check if the combined markdown contains mostly Arabic text
|
| 758 |
+
if is_arabic_text(combined_markdown):
|
| 759 |
+
markdown_update = gr.update(value=combined_markdown, rtl=True)
|
| 760 |
+
else:
|
| 761 |
+
markdown_update = combined_markdown
|
| 762 |
+
|
| 763 |
+
return (
|
| 764 |
+
first_result['processed_image'],
|
| 765 |
+
markdown_update,
|
| 766 |
+
first_result['layout_result']
|
| 767 |
+
)
|
| 768 |
+
else:
|
| 769 |
+
# Process single image
|
| 770 |
+
result = process_image(
|
| 771 |
+
model_name,
|
| 772 |
+
image,
|
| 773 |
+
min_pixels=int(min_pix) if min_pix else None,
|
| 774 |
+
max_pixels=int(max_pix) if max_pix else None
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
pdf_cache["results"] = [result]
|
| 778 |
+
pdf_cache["is_parsed"] = True
|
| 779 |
+
|
| 780 |
+
# Check if the content contains mostly Arabic text
|
| 781 |
+
content = result['markdown_content'] or "No content extracted"
|
| 782 |
+
if is_arabic_text(content):
|
| 783 |
+
markdown_update = gr.update(value=content, rtl=True)
|
| 784 |
+
else:
|
| 785 |
+
markdown_update = content
|
| 786 |
+
|
| 787 |
+
return (
|
| 788 |
+
result['processed_image'],
|
| 789 |
+
markdown_update,
|
| 790 |
+
result['layout_result']
|
| 791 |
+
)
|
| 792 |
+
|
| 793 |
+
except Exception as e:
|
| 794 |
+
error_msg = f"Error processing document: {str(e)}"
|
| 795 |
+
print(error_msg)
|
| 796 |
+
traceback.print_exc()
|
| 797 |
+
return None, error_msg, None
|
| 798 |
+
|
| 799 |
+
def handle_file_upload(file_path):
|
| 800 |
+
"""Handle file upload and show preview"""
|
| 801 |
+
if not file_path:
|
| 802 |
+
return None, "No file loaded"
|
| 803 |
+
|
| 804 |
+
image, page_info = load_file_for_preview(file_path)
|
| 805 |
+
return image, page_info
|
| 806 |
+
|
| 807 |
+
def clear_all():
|
| 808 |
+
"""Clear all data and reset interface"""
|
| 809 |
+
global pdf_cache
|
| 810 |
+
|
| 811 |
+
pdf_cache = {
|
| 812 |
+
"images": [], "current_page": 0, "total_pages": 0,
|
| 813 |
+
"file_type": None, "is_parsed": False, "results": []
|
| 814 |
+
}
|
| 815 |
+
|
| 816 |
+
return (
|
| 817 |
+
None, # file_input
|
| 818 |
+
None, # image_preview
|
| 819 |
+
'<div class="page-info">No file loaded</div>', # page_info
|
| 820 |
+
None, # processed_image
|
| 821 |
+
"Click 'Process Document' to see extracted content...", # markdown_output
|
| 822 |
+
None, # json_output
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
# Wire up event handlers
|
| 826 |
file_input.change(
|
| 827 |
+
handle_file_upload,
|
| 828 |
inputs=[file_input],
|
| 829 |
outputs=[image_preview, page_info]
|
| 830 |
)
|
|
|
|
| 846 |
)
|
| 847 |
|
| 848 |
clear_btn.click(
|
| 849 |
+
clear_all,
|
| 850 |
+
outputs=[
|
| 851 |
+
file_input, image_preview, page_info, processed_image,
|
| 852 |
+
markdown_output, json_output
|
| 853 |
+
]
|
| 854 |
)
|
| 855 |
|
| 856 |
return demo
|
| 857 |
|
| 858 |
+
|
| 859 |
if __name__ == "__main__":
|
| 860 |
+
# Create and launch the interface
|
| 861 |
demo = create_gradio_interface()
|
| 862 |
+
demo.queue(max_size=10).launch(
|
| 863 |
+
server_name="0.0.0.0",
|
| 864 |
+
server_port=7860,
|
| 865 |
+
share=False,
|
| 866 |
+
debug=True,
|
| 867 |
+
show_error=True
|
| 868 |
+
)
|