import streamlit as st import pandas as pd complaints_count = st.container() # contains the number of complaints in each bucket graphs = st.container() # contains the graphs for the complaints dataset = st.container() # shows the recent complaints # TOTAL COUNT SECTION with complaints_count: st.header("Complaints counts") data = "./data/complaints_v1.csv" complaints_df = pd.read_csv(data,sep=",") total_counts = len(complaints_df.index) service_issues_counts = complaints_df['sub_cat'].value_counts()['service_issues'] product_issues_counts = complaints_df['sub_cat'].value_counts()['product_issues'] billing_issues_counts = complaints_df['sub_cat'].value_counts()['billing_issues'] col1,col2,col3,col4 = st.columns(4) col1.metric(label="Total Complaints", value=total_counts, delta="1.2 %") col2.metric(label="Total Billing Issues", value=service_issues_counts, delta="-1 %") col3.metric(label="Total Product Issues", value=product_issues_counts, delta="-1.3 %") col4.metric(label="Total Service Issues ", value=billing_issues_counts, delta="+1.2 ") #Graphs SECTION with graphs: st.header("Gprahs") # RECENT COMPLAINTS SECTION with dataset: st.header("Recent Complaints") ground_truth_data = pd.read_csv("./data/ground_truth.csv") ground_truth_data.rename(columns= {'audio_id':'Audio ID','file_name':'File Name', 'transcription':'Complaints', 'sub_cat':'Complaint Category'}, inplace = True) columns = ['Audio ID','File Name', 'Complaints', 'Complaint Category'] st.dataframe(ground_truth_data[columns].iloc[15:23], hide_index=True )