Commit
·
c04077b
1
Parent(s):
d478238
Add requirements.txt and medical VLM SAM-2 CheXagent demo
Browse files- app.py +435 -0
- requirements.txt +32 -0
- sam2 +1 -0
app.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
Combined Medical-VLM, **SAM-2 automatic masking**, and CheXagent demo.
|
| 6 |
+
|
| 7 |
+
⭑ Changes ⭑
|
| 8 |
+
-----------
|
| 9 |
+
1. All Segment-Anything-v1 fallback code has been removed.
|
| 10 |
+
2. A single **SAM-2 AutomaticMaskGenerator** is built once and reused.
|
| 11 |
+
3. Tumor-segmentation tab now runs *fully automatic* masking — no bounding-box textbox.
|
| 12 |
+
4. Fixed SAM-2 config path to use relative path instead of absolute path.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
# ---------------------------------------------------------------------
|
| 16 |
+
# Standard libs
|
| 17 |
+
# ---------------------------------------------------------------------
|
| 18 |
+
# ---------------------------------------------------------------------
|
| 19 |
+
import os, warnings
|
| 20 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # CPU fallback for missing MPS ops
|
| 21 |
+
warnings.filterwarnings("ignore", message=r".*upsample_bicubic2d.*") # hide one-line notice
|
| 22 |
+
|
| 23 |
+
import os
|
| 24 |
+
import sys
|
| 25 |
+
import uuid
|
| 26 |
+
import tempfile
|
| 27 |
+
from threading import Thread
|
| 28 |
+
|
| 29 |
+
# ---------------------------------------------------------------------
|
| 30 |
+
# Third-party libs
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# ---------------------------------------------------------------------
|
| 34 |
+
import torch
|
| 35 |
+
import numpy as np
|
| 36 |
+
from PIL import Image, ImageDraw
|
| 37 |
+
import gradio as gr
|
| 38 |
+
|
| 39 |
+
# If you cloned facebookresearch/sam2 into the repo root, make sure it's importable
|
| 40 |
+
sys.path.append(os.path.abspath("."))
|
| 41 |
+
|
| 42 |
+
# =============================================================================
|
| 43 |
+
# Qwen-VLM imports & helper
|
| 44 |
+
# =============================================================================
|
| 45 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 46 |
+
from qwen_vl_utils import process_vision_info
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# =============================================================================
|
| 50 |
+
# SAM-2 imports (only SAM-2, no v1 fallback)
|
| 51 |
+
# =============================================================================
|
| 52 |
+
from sam2.build_sam import build_sam2
|
| 53 |
+
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
| 54 |
+
|
| 55 |
+
# Alternative: try direct model loading if build_sam2 continues to fail
|
| 56 |
+
try:
|
| 57 |
+
from sam2.modeling.sam2_base import SAM2Base
|
| 58 |
+
from sam2.utils.misc import get_device_index
|
| 59 |
+
except ImportError:
|
| 60 |
+
print("Could not import additional SAM2 components")
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# =============================================================================
|
| 64 |
+
# CheXagent imports
|
| 65 |
+
# =============================================================================
|
| 66 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# ---------------------------------------------------------------------
|
| 70 |
+
# Devices
|
| 71 |
+
# ---------------------------------------------------------------------
|
| 72 |
+
def get_device():
|
| 73 |
+
if torch.cuda.is_available():
|
| 74 |
+
return torch.device("cuda")
|
| 75 |
+
if torch.backends.mps.is_available():
|
| 76 |
+
return torch.device("mps")
|
| 77 |
+
return torch.device("cpu")
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# =============================================================================
|
| 81 |
+
# Qwen-VLM model & agent
|
| 82 |
+
# =============================================================================
|
| 83 |
+
_qwen_model = None
|
| 84 |
+
_qwen_processor = None
|
| 85 |
+
_qwen_device = None
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def load_qwen_model_and_processor(hf_token=None):
|
| 89 |
+
global _qwen_model, _qwen_processor, _qwen_device
|
| 90 |
+
if _qwen_model is None:
|
| 91 |
+
_qwen_device = "mps" if torch.backends.mps.is_available() else "cpu"
|
| 92 |
+
print(f"[Qwen] loading model on {_qwen_device}")
|
| 93 |
+
auth_kwargs = {"use_auth_token": hf_token} if hf_token else {}
|
| 94 |
+
_qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 95 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
| 96 |
+
trust_remote_code=True,
|
| 97 |
+
attn_implementation="eager",
|
| 98 |
+
torch_dtype=torch.float32,
|
| 99 |
+
low_cpu_mem_usage=True,
|
| 100 |
+
device_map=None,
|
| 101 |
+
**auth_kwargs,
|
| 102 |
+
).to(_qwen_device)
|
| 103 |
+
_qwen_processor = AutoProcessor.from_pretrained(
|
| 104 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
| 105 |
+
trust_remote_code=True,
|
| 106 |
+
**auth_kwargs,
|
| 107 |
+
)
|
| 108 |
+
return _qwen_model, _qwen_processor, _qwen_device
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class MedicalVLMAgent:
|
| 112 |
+
"""Light wrapper around Qwen-VLM with an optional image."""
|
| 113 |
+
|
| 114 |
+
def __init__(self, model, processor, device):
|
| 115 |
+
self.model = model
|
| 116 |
+
self.processor = processor
|
| 117 |
+
self.device = device
|
| 118 |
+
self.system_prompt = (
|
| 119 |
+
"You are a medical information assistant with vision capabilities.\n"
|
| 120 |
+
"Disclaimer: I am not a licensed medical professional. "
|
| 121 |
+
"The information provided is for reference only and should not be taken as medical advice."
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def run(self, user_text: str, image: Image.Image | None = None) -> str:
|
| 125 |
+
messages = [
|
| 126 |
+
{"role": "system", "content": [{"type": "text", "text": self.system_prompt}]}
|
| 127 |
+
]
|
| 128 |
+
user_content = []
|
| 129 |
+
if image is not None:
|
| 130 |
+
tmp = f"/tmp/{uuid.uuid4()}.png"
|
| 131 |
+
image.save(tmp)
|
| 132 |
+
user_content.append({"type": "image", "image": tmp})
|
| 133 |
+
user_content.append({"type": "text", "text": user_text or "Please describe the image."})
|
| 134 |
+
messages.append({"role": "user", "content": user_content})
|
| 135 |
+
|
| 136 |
+
prompt_text = self.processor.apply_chat_template(
|
| 137 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 138 |
+
)
|
| 139 |
+
img_inputs, vid_inputs = process_vision_info(messages)
|
| 140 |
+
inputs = self.processor(
|
| 141 |
+
text=[prompt_text],
|
| 142 |
+
images=img_inputs,
|
| 143 |
+
videos=vid_inputs,
|
| 144 |
+
padding=True,
|
| 145 |
+
return_tensors="pt",
|
| 146 |
+
).to(self.device)
|
| 147 |
+
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
out = self.model.generate(**inputs, max_new_tokens=128)
|
| 150 |
+
trimmed = out[0][inputs.input_ids.shape[1] :]
|
| 151 |
+
return self.processor.decode(trimmed, skip_special_tokens=True).strip()
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# =============================================================================
|
| 155 |
+
# SAM-2 model + AutomaticMaskGenerator
|
| 156 |
+
# =============================================================================
|
| 157 |
+
|
| 158 |
+
# =============================================================================
|
| 159 |
+
# SAM-2.1 model + AutomaticMaskGenerator (concise version)
|
| 160 |
+
# =============================================================================
|
| 161 |
+
# =============================================================================
|
| 162 |
+
# SAM-2.1 model + AutomaticMaskGenerator (final minimal version)
|
| 163 |
+
# =============================================================================
|
| 164 |
+
import os
|
| 165 |
+
from sam2.build_sam import build_sam2
|
| 166 |
+
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
| 167 |
+
|
| 168 |
+
def initialize_sam2():
|
| 169 |
+
# These two files are already in your repo
|
| 170 |
+
CKPT = "checkpoints/sam2.1_hiera_large.pt" # ≈2.7 GB
|
| 171 |
+
CFG = "configs/sam2.1/sam2.1_hiera_l.yaml"
|
| 172 |
+
|
| 173 |
+
# One chdir so Hydra's search path starts inside sam2/sam2/
|
| 174 |
+
os.chdir("sam2/sam2")
|
| 175 |
+
|
| 176 |
+
device = get_device()
|
| 177 |
+
print(f"[SAM-2] building model on {device}")
|
| 178 |
+
|
| 179 |
+
sam2_model = build_sam2(
|
| 180 |
+
CFG, # relative to sam2/sam2/
|
| 181 |
+
CKPT, # relative after chdir
|
| 182 |
+
device=device,
|
| 183 |
+
apply_postprocessing=False,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
mask_gen = SAM2AutomaticMaskGenerator(
|
| 187 |
+
model=sam2_model,
|
| 188 |
+
points_per_side=32,
|
| 189 |
+
pred_iou_thresh=0.86,
|
| 190 |
+
stability_score_thresh=0.92,
|
| 191 |
+
crop_n_layers=0,
|
| 192 |
+
)
|
| 193 |
+
return sam2_model, mask_gen
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# ---------------------- build once ----------------------
|
| 197 |
+
try:
|
| 198 |
+
_sam2_model, _mask_generator = initialize_sam2()
|
| 199 |
+
print("[SAM-2] Successfully initialized!")
|
| 200 |
+
except Exception as e:
|
| 201 |
+
print(f"[SAM-2] Failed to initialize: {e}")
|
| 202 |
+
_sam2_model, _mask_generator = None, None
|
| 203 |
+
|
| 204 |
+
def automatic_mask_overlay(image_np: np.ndarray) -> np.ndarray:
|
| 205 |
+
"""Generate masks and alpha-blend them on top of the original image."""
|
| 206 |
+
if _mask_generator is None:
|
| 207 |
+
raise RuntimeError("SAM-2 mask generator not initialized")
|
| 208 |
+
|
| 209 |
+
anns = _mask_generator.generate(image_np)
|
| 210 |
+
if not anns:
|
| 211 |
+
return image_np
|
| 212 |
+
|
| 213 |
+
overlay = image_np.copy()
|
| 214 |
+
if overlay.ndim == 2: # grayscale → RGB
|
| 215 |
+
overlay = np.stack([overlay] * 3, axis=2)
|
| 216 |
+
|
| 217 |
+
for ann in sorted(anns, key=lambda x: x["area"], reverse=True):
|
| 218 |
+
m = ann["segmentation"]
|
| 219 |
+
color = np.random.randint(0, 255, 3, dtype=np.uint8)
|
| 220 |
+
overlay[m] = (overlay[m] * 0.5 + color * 0.5).astype(np.uint8)
|
| 221 |
+
|
| 222 |
+
return overlay
|
| 223 |
+
|
| 224 |
+
def tumor_segmentation_interface(image: Image.Image | None):
|
| 225 |
+
if image is None:
|
| 226 |
+
return None, "Please upload an image."
|
| 227 |
+
|
| 228 |
+
if _mask_generator is None:
|
| 229 |
+
return None, "SAM-2 not properly initialized. Check the console for errors."
|
| 230 |
+
|
| 231 |
+
try:
|
| 232 |
+
img_np = np.array(image.convert("RGB"))
|
| 233 |
+
out_np = automatic_mask_overlay(img_np)
|
| 234 |
+
n_masks = len(_mask_generator.generate(img_np))
|
| 235 |
+
return Image.fromarray(out_np), f"{n_masks} masks found."
|
| 236 |
+
except Exception as e:
|
| 237 |
+
return None, f"SAM-2 error: {e}"
|
| 238 |
+
|
| 239 |
+
# =============================================================================
|
| 240 |
+
# CheXagent set-up (unchanged)
|
| 241 |
+
# =============================================================================
|
| 242 |
+
chex_name = "StanfordAIMI/CheXagent-2-3b"
|
| 243 |
+
chex_tok = AutoTokenizer.from_pretrained(chex_name, trust_remote_code=True)
|
| 244 |
+
chex_model = AutoModelForCausalLM.from_pretrained(
|
| 245 |
+
chex_name, device_map="auto", trust_remote_code=True
|
| 246 |
+
)
|
| 247 |
+
chex_model = chex_model.half() if torch.cuda.is_available() else chex_model.float()
|
| 248 |
+
chex_model.eval()
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def get_model_device(model):
|
| 252 |
+
for p in model.parameters():
|
| 253 |
+
return p.device
|
| 254 |
+
return torch.device("cpu")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def clean_text(text):
|
| 258 |
+
return text.replace("</s>", "")
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
@torch.no_grad()
|
| 262 |
+
def response_report_generation(pil_image_1, pil_image_2):
|
| 263 |
+
"""Structured chest-X-ray report (streaming)."""
|
| 264 |
+
streamer = TextIteratorStreamer(chex_tok, skip_prompt=True, skip_special_tokens=True)
|
| 265 |
+
paths = []
|
| 266 |
+
for im in [pil_image_1, pil_image_2]:
|
| 267 |
+
if im is None:
|
| 268 |
+
continue
|
| 269 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tfile:
|
| 270 |
+
im.save(tfile.name)
|
| 271 |
+
paths.append(tfile.name)
|
| 272 |
+
|
| 273 |
+
device = get_model_device(chex_model)
|
| 274 |
+
anatomies = [
|
| 275 |
+
"View",
|
| 276 |
+
"Airway",
|
| 277 |
+
"Breathing",
|
| 278 |
+
"Cardiac",
|
| 279 |
+
"Diaphragm",
|
| 280 |
+
"Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, pacemakers)",
|
| 281 |
+
]
|
| 282 |
+
prompts = [
|
| 283 |
+
"Determine the view of this CXR",
|
| 284 |
+
*[
|
| 285 |
+
f'Provide a detailed description of "{a}" in the chest X-ray'
|
| 286 |
+
for a in anatomies[1:]
|
| 287 |
+
],
|
| 288 |
+
]
|
| 289 |
+
|
| 290 |
+
findings = ""
|
| 291 |
+
partial = "## Generating Findings (step-by-step):\n\n"
|
| 292 |
+
for idx, (anat, prompt) in enumerate(zip(anatomies, prompts)):
|
| 293 |
+
query = chex_tok.from_list_format(
|
| 294 |
+
[*[{"image": p} for p in paths], {"text": prompt}]
|
| 295 |
+
)
|
| 296 |
+
conv = [
|
| 297 |
+
{"from": "system", "value": "You are a helpful assistant."},
|
| 298 |
+
{"from": "human", "value": query},
|
| 299 |
+
]
|
| 300 |
+
inp = chex_tok.apply_chat_template(
|
| 301 |
+
conv, add_generation_prompt=True, return_tensors="pt"
|
| 302 |
+
).to(device)
|
| 303 |
+
generate_kwargs = dict(
|
| 304 |
+
input_ids=inp,
|
| 305 |
+
max_new_tokens=512,
|
| 306 |
+
do_sample=False,
|
| 307 |
+
num_beams=1,
|
| 308 |
+
streamer=streamer,
|
| 309 |
+
)
|
| 310 |
+
Thread(target=chex_model.generate, kwargs=generate_kwargs).start()
|
| 311 |
+
partial += f"**Step {idx}: {anat}...**\n\n"
|
| 312 |
+
for tok in streamer:
|
| 313 |
+
if idx:
|
| 314 |
+
findings += tok
|
| 315 |
+
partial += tok
|
| 316 |
+
yield clean_text(partial)
|
| 317 |
+
partial += "\n\n"
|
| 318 |
+
findings += " "
|
| 319 |
+
findings = findings.strip()
|
| 320 |
+
|
| 321 |
+
# Impression
|
| 322 |
+
partial += "## Generating Impression\n\n"
|
| 323 |
+
prompt = f"Write the Impression section for the following Findings: {findings}"
|
| 324 |
+
conv = [
|
| 325 |
+
{"from": "system", "value": "You are a helpful assistant."},
|
| 326 |
+
{"from": "human", "value": chex_tok.from_list_format([{"text": prompt}])},
|
| 327 |
+
]
|
| 328 |
+
inp = chex_tok.apply_chat_template(
|
| 329 |
+
conv, add_generation_prompt=True, return_tensors="pt"
|
| 330 |
+
).to(device)
|
| 331 |
+
Thread(
|
| 332 |
+
target=chex_model.generate,
|
| 333 |
+
kwargs=dict(
|
| 334 |
+
input_ids=inp,
|
| 335 |
+
do_sample=False,
|
| 336 |
+
num_beams=1,
|
| 337 |
+
max_new_tokens=512,
|
| 338 |
+
streamer=streamer,
|
| 339 |
+
),
|
| 340 |
+
).start()
|
| 341 |
+
for tok in streamer:
|
| 342 |
+
partial += tok
|
| 343 |
+
yield clean_text(partial)
|
| 344 |
+
yield clean_text(partial)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
@torch.no_grad()
|
| 348 |
+
def response_phrase_grounding(pil_image, prompt_text):
|
| 349 |
+
"""Very simple visual-grounding placeholder."""
|
| 350 |
+
if pil_image is None:
|
| 351 |
+
return "Please upload an image.", None
|
| 352 |
+
|
| 353 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tfile:
|
| 354 |
+
pil_image.save(tfile.name)
|
| 355 |
+
img_path = tfile.name
|
| 356 |
+
|
| 357 |
+
device = get_model_device(chex_model)
|
| 358 |
+
query = chex_tok.from_list_format([{"image": img_path}, {"text": prompt_text}])
|
| 359 |
+
conv = [
|
| 360 |
+
{"from": "system", "value": "You are a helpful assistant."},
|
| 361 |
+
{"from": "human", "value": query},
|
| 362 |
+
]
|
| 363 |
+
inp = chex_tok.apply_chat_template(
|
| 364 |
+
conv, add_generation_prompt=True, return_tensors="pt"
|
| 365 |
+
).to(device)
|
| 366 |
+
out = chex_model.generate(
|
| 367 |
+
input_ids=inp, do_sample=False, num_beams=1, max_new_tokens=512
|
| 368 |
+
)
|
| 369 |
+
resp = clean_text(chex_tok.decode(out[0][inp.shape[1] :]))
|
| 370 |
+
|
| 371 |
+
# simple center box (placeholder)
|
| 372 |
+
w, h = pil_image.size
|
| 373 |
+
cx, cy, sz = w // 2, h // 2, min(w, h) // 4
|
| 374 |
+
draw = ImageDraw.Draw(pil_image)
|
| 375 |
+
draw.rectangle([(cx - sz, cy - sz), (cx + sz, cy + sz)], outline="red", width=3)
|
| 376 |
+
|
| 377 |
+
return resp, pil_image
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
# =============================================================================
|
| 381 |
+
# Gradio UI
|
| 382 |
+
# =============================================================================
|
| 383 |
+
qwen_model, qwen_proc, qwen_dev = load_qwen_model_and_processor()
|
| 384 |
+
med_agent = MedicalVLMAgent(qwen_model, qwen_proc, qwen_dev)
|
| 385 |
+
|
| 386 |
+
with gr.Blocks() as demo:
|
| 387 |
+
gr.Markdown("# Combined Medical Q&A · SAM-2 Automatic Masking · CheXagent")
|
| 388 |
+
|
| 389 |
+
# ---------------------------------------------------------
|
| 390 |
+
with gr.Tab("Medical Q&A"):
|
| 391 |
+
q_in = gr.Textbox(label="Question / description", lines=3)
|
| 392 |
+
q_img = gr.Image(label="Optional image", type="pil")
|
| 393 |
+
q_btn = gr.Button("Submit")
|
| 394 |
+
q_out = gr.Textbox(label="Answer")
|
| 395 |
+
q_btn.click(fn=med_agent.run, inputs=[q_in, q_img], outputs=q_out)
|
| 396 |
+
|
| 397 |
+
# ---------------------------------------------------------
|
| 398 |
+
with gr.Tab("Automatic masking (SAM-2)"):
|
| 399 |
+
seg_img = gr.Image(label="Image", type="pil")
|
| 400 |
+
seg_btn = gr.Button("Run segmentation")
|
| 401 |
+
seg_out = gr.Image(label="Overlay", type="pil")
|
| 402 |
+
seg_status = gr.Textbox(label="Status", interactive=False)
|
| 403 |
+
seg_btn.click(
|
| 404 |
+
fn=tumor_segmentation_interface,
|
| 405 |
+
inputs=seg_img,
|
| 406 |
+
outputs=[seg_out, seg_status],
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# ---------------------------------------------------------
|
| 410 |
+
with gr.Tab("CheXagent – Structured report"):
|
| 411 |
+
gr.Markdown("Upload one or two images; the report streams live.")
|
| 412 |
+
cx1 = gr.Image(label="Image 1", image_mode="L", type="pil")
|
| 413 |
+
cx2 = gr.Image(label="Image 2", image_mode="L", type="pil")
|
| 414 |
+
cx_report = gr.Markdown()
|
| 415 |
+
gr.Interface(
|
| 416 |
+
fn=response_report_generation,
|
| 417 |
+
inputs=[cx1, cx2],
|
| 418 |
+
outputs=cx_report,
|
| 419 |
+
live=True,
|
| 420 |
+
).render()
|
| 421 |
+
|
| 422 |
+
# ---------------------------------------------------------
|
| 423 |
+
with gr.Tab("CheXagent – Visual grounding"):
|
| 424 |
+
vg_img = gr.Image(image_mode="L", type="pil")
|
| 425 |
+
vg_prompt = gr.Textbox(value="Locate the highlighted finding:")
|
| 426 |
+
vg_text = gr.Markdown()
|
| 427 |
+
vg_out_img = gr.Image()
|
| 428 |
+
gr.Interface(
|
| 429 |
+
fn=response_phrase_grounding,
|
| 430 |
+
inputs=[vg_img, vg_prompt],
|
| 431 |
+
outputs=[vg_text, vg_out_img],
|
| 432 |
+
).render()
|
| 433 |
+
|
| 434 |
+
if __name__ == "__main__":
|
| 435 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core ML/AI frameworks
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
torchvision>=0.15.0
|
| 4 |
+
numpy>=1.21.0
|
| 5 |
+
pillow>=9.0.0
|
| 6 |
+
|
| 7 |
+
# Transformers and related
|
| 8 |
+
transformers>=4.40.0
|
| 9 |
+
accelerate>=0.20.0
|
| 10 |
+
qwen-vl-utils>=0.0.8
|
| 11 |
+
|
| 12 |
+
# Gradio for web interface
|
| 13 |
+
gradio>=4.0.0
|
| 14 |
+
|
| 15 |
+
# SAM-2 dependencies
|
| 16 |
+
opencv-python>=4.8.0
|
| 17 |
+
matplotlib>=3.5.0
|
| 18 |
+
hydra-core>=1.3.0
|
| 19 |
+
omegaconf>=2.3.0
|
| 20 |
+
|
| 21 |
+
# Additional utilities
|
| 22 |
+
safetensors>=0.3.0
|
| 23 |
+
tokenizers>=0.13.0
|
| 24 |
+
huggingface-hub>=0.16.0
|
| 25 |
+
sentencepiece>=0.1.99
|
| 26 |
+
protobuf>=3.20.0
|
| 27 |
+
|
| 28 |
+
# For CheXagent streaming
|
| 29 |
+
threading-utils
|
| 30 |
+
|
| 31 |
+
# Optional but recommended for better performance
|
| 32 |
+
flash-attn>=2.0.0; sys_platform != "darwin" # Skip on macOS due to compatibility issues
|
sam2
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 2b90b9f5ceec907a1c18123530e92e794ad901a4
|