Update app.py
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ Features:
|
|
| 12 |
- Automatic dependency checking & installation for SAM-2
|
| 13 |
|
| 14 |
Usage:
|
| 15 |
-
python medical_ai_app.py
|
| 16 |
Requires:
|
| 17 |
torch, transformers, PIL, gradio, ultralytics, requests, opencv-python, pyyaml
|
| 18 |
"""
|
|
@@ -25,6 +25,9 @@ import warnings
|
|
| 25 |
from threading import Thread
|
| 26 |
from pathlib import Path
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
# Environment setup
|
| 29 |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
| 30 |
warnings.filterwarnings("ignore", message=r".*upsample_bicubic2d.*")
|
|
@@ -37,11 +40,11 @@ from PIL import Image, ImageDraw
|
|
| 37 |
import gradio as gr
|
| 38 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 39 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
|
|
| 40 |
|
| 41 |
# =============================================================================
|
| 42 |
# SAM-2 Alias Patch & Installer
|
| 43 |
# =============================================================================
|
| 44 |
-
import importlib
|
| 45 |
try:
|
| 46 |
import sam_2
|
| 47 |
sys.modules['sam2'] = sam_2
|
|
@@ -94,18 +97,29 @@ _qwen_model = None
|
|
| 94 |
_qwen_processor = None
|
| 95 |
_qwen_device = None
|
| 96 |
|
| 97 |
-
def load_qwen_model_and_processor(
|
| 98 |
global _qwen_model, _qwen_processor, _qwen_device
|
| 99 |
if _qwen_model is None:
|
| 100 |
_qwen_device = get_device()
|
| 101 |
-
auth = {"use_auth_token":
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
return _qwen_model, _qwen_processor, _qwen_device
|
| 110 |
|
| 111 |
class MedicalVLMAgent:
|
|
@@ -116,8 +130,8 @@ class MedicalVLMAgent:
|
|
| 116 |
"Disclaimer: I am not a licensed medical professional."
|
| 117 |
)
|
| 118 |
def run(self, text, image=None):
|
| 119 |
-
if self.model
|
| 120 |
-
return "Qwen-VLM
|
| 121 |
msgs = [{"role":"system","content":[{"type":"text","text":self.sys_prompt}]}]
|
| 122 |
user_cont = []
|
| 123 |
if image:
|
|
@@ -125,8 +139,12 @@ class MedicalVLMAgent:
|
|
| 125 |
user_cont.append({"type":"image","image":tmp})
|
| 126 |
user_cont.append({"type":"text","text": text or ""})
|
| 127 |
msgs.append({"role":"user","content":user_cont})
|
| 128 |
-
prompt = self.processor.apply_chat_template(
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
out = self.model.generate(**inputs, max_new_tokens=128)
|
| 131 |
resp = out[0][inputs.input_ids.shape[1]:]
|
| 132 |
return self.processor.decode(resp, skip_special_tokens=True).strip()
|
|
@@ -137,58 +155,50 @@ class MedicalVLMAgent:
|
|
| 137 |
_sam2_model, _mask_generator = (None, None)
|
| 138 |
if SAM2_AVAILABLE:
|
| 139 |
try:
|
| 140 |
-
CKPT="checkpoints/sam2.1_hiera_large.pt"
|
|
|
|
| 141 |
os.chdir("segment-anything-2/sam2/sam2")
|
| 142 |
-
_sam2_model = build_sam2(
|
|
|
|
|
|
|
| 143 |
_mask_generator = SAM2AutomaticMaskGenerator(_sam2_model)
|
| 144 |
except Exception as e:
|
| 145 |
-
print(f"SAM-2
|
| 146 |
_mask_generator = None
|
| 147 |
|
| 148 |
-
def segmentation_interface(image):
|
| 149 |
-
if image is None: return None, "Upload an image"
|
| 150 |
-
if not _mask_generator: return None, "SAM-2 unavailable"
|
| 151 |
-
arr = np.array(image.convert('RGB'))
|
| 152 |
-
anns = _mask_generator.generate(arr)
|
| 153 |
-
overlay = arr.copy()
|
| 154 |
-
for ann in sorted(anns, key=lambda x: x['area'], reverse=True):
|
| 155 |
-
m = ann['segmentation']; color=np.random.randint(0,255,3)
|
| 156 |
-
overlay[m] = (overlay[m]*0.5 + color*0.5).astype(np.uint8)
|
| 157 |
-
return Image.fromarray(overlay), f"{len(anns)} masks found"
|
| 158 |
-
|
| 159 |
-
# =============================================================================
|
| 160 |
-
# Fallback segmentation
|
| 161 |
-
# =============================================================================
|
| 162 |
-
def fallback_segmentation(image):
|
| 163 |
-
if image is None: return None, "Upload an image"
|
| 164 |
-
arr = np.array(image.convert('RGB'))
|
| 165 |
-
gray=cv2.cvtColor(arr,cv2.COLOR_RGB2GRAY)
|
| 166 |
-
_,th=cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
|
| 167 |
-
overlay=arr.copy(); overlay[th>0]=[255,0,0]
|
| 168 |
-
blended=cv2.addWeighted(arr,0.7,overlay,0.3,0)
|
| 169 |
-
return Image.fromarray(blended), "Fallback applied"
|
| 170 |
-
|
| 171 |
# =============================================================================
|
| 172 |
# CheXagent: structured report & grounding
|
| 173 |
# =============================================================================
|
| 174 |
try:
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
if torch.cuda.is_available(): chex_model = chex_model.half()
|
| 178 |
-
chex_model.eval()
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
| 181 |
|
| 182 |
@torch.no_grad()
|
| 183 |
def report_generation(im1, im2):
|
| 184 |
-
if not CHEX_AVAILABLE:
|
|
|
|
|
|
|
| 185 |
streamer = TextIteratorStreamer(chex_tok, skip_prompt=True)
|
| 186 |
-
yield "
|
| 187 |
|
| 188 |
@torch.no_grad()
|
| 189 |
def phrase_grounding(image, prompt):
|
| 190 |
-
if not CHEX_AVAILABLE:
|
| 191 |
-
|
|
|
|
| 192 |
draw.rectangle([(w*0.25,h*0.25),(w*0.75,h*0.75)], outline='red', width=3)
|
| 193 |
return prompt, image
|
| 194 |
|
|
@@ -196,47 +206,46 @@ def phrase_grounding(image, prompt):
|
|
| 196 |
# Gradio UI
|
| 197 |
# =============================================================================
|
| 198 |
def create_ui():
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
med = MedicalVLMAgent(m,p,d)
|
| 203 |
-
qwen_ok = True
|
| 204 |
-
except Exception:
|
| 205 |
-
med = None
|
| 206 |
-
qwen_ok = False
|
| 207 |
|
| 208 |
with gr.Blocks() as demo:
|
| 209 |
gr.Markdown("# Medical AI Assistant")
|
| 210 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
with gr.Tab("Medical Q&A"):
|
| 212 |
-
if qwen_ok
|
| 213 |
txt = gr.Textbox(label="Question / description", lines=3)
|
| 214 |
img = gr.Image(label="Optional image", type='pil')
|
| 215 |
out = gr.Textbox(label="Answer")
|
| 216 |
-
gr.Button("Ask").click(med.run,
|
| 217 |
else:
|
| 218 |
-
gr.Markdown("β Medical Q&A
|
| 219 |
with gr.Tab("Segmentation"):
|
| 220 |
seg = gr.Image(label="Upload image", type='pil')
|
| 221 |
so = gr.Image(label="Result")
|
| 222 |
ss = gr.Textbox(label="Status", interactive=False)
|
| 223 |
fn = segmentation_interface if _mask_generator else fallback_segmentation
|
| 224 |
-
gr.Button("Segment").click(fn,
|
| 225 |
with gr.Tab("CheXagent Report"):
|
| 226 |
c1 = gr.Image(type='pil', label="Image 1")
|
| 227 |
c2 = gr.Image(type='pil', label="Image 2")
|
| 228 |
rout = gr.Markdown()
|
| 229 |
if CHEX_AVAILABLE:
|
| 230 |
-
gr.Interface(
|
| 231 |
else:
|
| 232 |
-
gr.Markdown("β CheXagent report not available.")
|
| 233 |
with gr.Tab("CheXagent Grounding"):
|
| 234 |
gi = gr.Image(type='pil', label="Image")
|
| 235 |
gp = gr.Textbox(label="Prompt")
|
| 236 |
gout = gr.Textbox(label="Response")
|
| 237 |
goimg = gr.Image(label="Output Image")
|
| 238 |
if CHEX_AVAILABLE:
|
| 239 |
-
gr.Interface(
|
| 240 |
else:
|
| 241 |
gr.Markdown("β CheXagent grounding not available.")
|
| 242 |
return demo
|
|
@@ -244,3 +253,4 @@ def create_ui():
|
|
| 244 |
if __name__ == "__main__":
|
| 245 |
ui = create_ui()
|
| 246 |
ui.launch(server_name='0.0.0.0', server_port=7860, share=True)
|
|
|
|
|
|
| 12 |
- Automatic dependency checking & installation for SAM-2
|
| 13 |
|
| 14 |
Usage:
|
| 15 |
+
HF_TOKEN=<your_token> python medical_ai_app.py # if private models require auth
|
| 16 |
Requires:
|
| 17 |
torch, transformers, PIL, gradio, ultralytics, requests, opencv-python, pyyaml
|
| 18 |
"""
|
|
|
|
| 25 |
from threading import Thread
|
| 26 |
from pathlib import Path
|
| 27 |
|
| 28 |
+
# Hugging Face token (for private models)
|
| 29 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 30 |
+
|
| 31 |
# Environment setup
|
| 32 |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
| 33 |
warnings.filterwarnings("ignore", message=r".*upsample_bicubic2d.*")
|
|
|
|
| 40 |
import gradio as gr
|
| 41 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 42 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 43 |
+
import importlib
|
| 44 |
|
| 45 |
# =============================================================================
|
| 46 |
# SAM-2 Alias Patch & Installer
|
| 47 |
# =============================================================================
|
|
|
|
| 48 |
try:
|
| 49 |
import sam_2
|
| 50 |
sys.modules['sam2'] = sam_2
|
|
|
|
| 97 |
_qwen_processor = None
|
| 98 |
_qwen_device = None
|
| 99 |
|
| 100 |
+
def load_qwen_model_and_processor():
|
| 101 |
global _qwen_model, _qwen_processor, _qwen_device
|
| 102 |
if _qwen_model is None:
|
| 103 |
_qwen_device = get_device()
|
| 104 |
+
auth = {"use_auth_token": HF_TOKEN} if HF_TOKEN else {}
|
| 105 |
+
print(f"[Qwen] Loading model with auth={'yes' if HF_TOKEN else 'no'} on {_qwen_device}")
|
| 106 |
+
try:
|
| 107 |
+
_qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 108 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
| 109 |
+
trust_remote_code=True,
|
| 110 |
+
torch_dtype=torch.float32,
|
| 111 |
+
low_cpu_mem_usage=True,
|
| 112 |
+
**auth
|
| 113 |
+
).to(_qwen_device)
|
| 114 |
+
_qwen_processor = AutoProcessor.from_pretrained(
|
| 115 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
| 116 |
+
trust_remote_code=True,
|
| 117 |
+
**auth
|
| 118 |
+
)
|
| 119 |
+
except Exception as e:
|
| 120 |
+
print(f"[Qwen] Model load failed: {e}")
|
| 121 |
+
_qwen_model = None
|
| 122 |
+
_qwen_processor = None
|
| 123 |
return _qwen_model, _qwen_processor, _qwen_device
|
| 124 |
|
| 125 |
class MedicalVLMAgent:
|
|
|
|
| 130 |
"Disclaimer: I am not a licensed medical professional."
|
| 131 |
)
|
| 132 |
def run(self, text, image=None):
|
| 133 |
+
if not self.model or not self.processor:
|
| 134 |
+
return "Qwen-VLM is not available"
|
| 135 |
msgs = [{"role":"system","content":[{"type":"text","text":self.sys_prompt}]}]
|
| 136 |
user_cont = []
|
| 137 |
if image:
|
|
|
|
| 139 |
user_cont.append({"type":"image","image":tmp})
|
| 140 |
user_cont.append({"type":"text","text": text or ""})
|
| 141 |
msgs.append({"role":"user","content":user_cont})
|
| 142 |
+
prompt = self.processor.apply_chat_template(
|
| 143 |
+
msgs, tokenize=False, add_generation_prompt=True
|
| 144 |
+
)
|
| 145 |
+
inputs = self.processor(
|
| 146 |
+
text=[prompt], images=[], videos=[], padding=True, return_tensors='pt'
|
| 147 |
+
).to(self.device)
|
| 148 |
out = self.model.generate(**inputs, max_new_tokens=128)
|
| 149 |
resp = out[0][inputs.input_ids.shape[1]:]
|
| 150 |
return self.processor.decode(resp, skip_special_tokens=True).strip()
|
|
|
|
| 155 |
_sam2_model, _mask_generator = (None, None)
|
| 156 |
if SAM2_AVAILABLE:
|
| 157 |
try:
|
| 158 |
+
CKPT="checkpoints/sam2.1_hiera_large.pt"
|
| 159 |
+
CFG="configs/sam2.1/sam2.1_hiera_l.yaml"
|
| 160 |
os.chdir("segment-anything-2/sam2/sam2")
|
| 161 |
+
_sam2_model = build_sam2(
|
| 162 |
+
CFG, CKPT, device=get_device(), apply_postprocessing=False
|
| 163 |
+
)
|
| 164 |
_mask_generator = SAM2AutomaticMaskGenerator(_sam2_model)
|
| 165 |
except Exception as e:
|
| 166 |
+
print(f"[SAM-2] Initialization error: {e}")
|
| 167 |
_mask_generator = None
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
# =============================================================================
|
| 170 |
# CheXagent: structured report & grounding
|
| 171 |
# =============================================================================
|
| 172 |
try:
|
| 173 |
+
print(f"[CheXagent] Loading with auth={'yes' if HF_TOKEN else 'no'}")
|
| 174 |
+
chex_tok = AutoTokenizer.from_pretrained(
|
| 175 |
+
"StanfordAIMI/CheXagent-2-3b", trust_remote_code=True,
|
| 176 |
+
use_auth_token=HF_TOKEN
|
| 177 |
+
)
|
| 178 |
+
chex_model = AutoModelForCausalLM.from_pretrained(
|
| 179 |
+
"StanfordAIMI/CheXagent-2-3b", device_map='auto', trust_remote_code=True,
|
| 180 |
+
use_auth_token=HF_TOKEN
|
| 181 |
+
)
|
| 182 |
if torch.cuda.is_available(): chex_model = chex_model.half()
|
| 183 |
+
chex_model.eval()
|
| 184 |
+
CHEX_AVAILABLE = True
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"[CheXagent] Load failed: {e}")
|
| 187 |
+
CHEX_AVAILABLE = False
|
| 188 |
|
| 189 |
@torch.no_grad()
|
| 190 |
def report_generation(im1, im2):
|
| 191 |
+
if not CHEX_AVAILABLE:
|
| 192 |
+
yield "CheXagent unavailable"
|
| 193 |
+
return
|
| 194 |
streamer = TextIteratorStreamer(chex_tok, skip_prompt=True)
|
| 195 |
+
yield "Streaming report... (not fully implemented)"
|
| 196 |
|
| 197 |
@torch.no_grad()
|
| 198 |
def phrase_grounding(image, prompt):
|
| 199 |
+
if not CHEX_AVAILABLE:
|
| 200 |
+
return "CheXagent unavailable", None
|
| 201 |
+
w,h = image.size; draw = ImageDraw.Draw(image)
|
| 202 |
draw.rectangle([(w*0.25,h*0.25),(w*0.75,h*0.75)], outline='red', width=3)
|
| 203 |
return prompt, image
|
| 204 |
|
|
|
|
| 206 |
# Gradio UI
|
| 207 |
# =============================================================================
|
| 208 |
def create_ui():
|
| 209 |
+
m, p, d = load_qwen_model_and_processor()
|
| 210 |
+
qwen_ok = bool(m and p)
|
| 211 |
+
med = MedicalVLMAgent(m, p, d) if qwen_ok else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
with gr.Blocks() as demo:
|
| 214 |
gr.Markdown("# Medical AI Assistant")
|
| 215 |
+
gr.Markdown(
|
| 216 |
+
f"- Qwen: {'β
' if qwen_ok else 'β'} "
|
| 217 |
+
f"- SAM-2: {'β
' if _mask_generator else 'β'} "
|
| 218 |
+
f"- CheXagent: {'β
' if CHEX_AVAILABLE else 'β'}"
|
| 219 |
+
)
|
| 220 |
with gr.Tab("Medical Q&A"):
|
| 221 |
+
if qwen_ok:
|
| 222 |
txt = gr.Textbox(label="Question / description", lines=3)
|
| 223 |
img = gr.Image(label="Optional image", type='pil')
|
| 224 |
out = gr.Textbox(label="Answer")
|
| 225 |
+
gr.Button("Ask").click(med.run, [txt, img], out)
|
| 226 |
else:
|
| 227 |
+
gr.Markdown("β Medical Q&A not available. Check HF_TOKEN and connectivity.")
|
| 228 |
with gr.Tab("Segmentation"):
|
| 229 |
seg = gr.Image(label="Upload image", type='pil')
|
| 230 |
so = gr.Image(label="Result")
|
| 231 |
ss = gr.Textbox(label="Status", interactive=False)
|
| 232 |
fn = segmentation_interface if _mask_generator else fallback_segmentation
|
| 233 |
+
gr.Button("Segment").click(fn, [seg], [so, ss])
|
| 234 |
with gr.Tab("CheXagent Report"):
|
| 235 |
c1 = gr.Image(type='pil', label="Image 1")
|
| 236 |
c2 = gr.Image(type='pil', label="Image 2")
|
| 237 |
rout = gr.Markdown()
|
| 238 |
if CHEX_AVAILABLE:
|
| 239 |
+
gr.Interface(report_generation, [c1, c2], rout, live=True).render()
|
| 240 |
else:
|
| 241 |
+
gr.Markdown("β CheXagent report not available. Check HF_TOKEN and connectivity.")
|
| 242 |
with gr.Tab("CheXagent Grounding"):
|
| 243 |
gi = gr.Image(type='pil', label="Image")
|
| 244 |
gp = gr.Textbox(label="Prompt")
|
| 245 |
gout = gr.Textbox(label="Response")
|
| 246 |
goimg = gr.Image(label="Output Image")
|
| 247 |
if CHEX_AVAILABLE:
|
| 248 |
+
gr.Interface(phrase_grounding, [gi, gp], [gout, goimg]).render()
|
| 249 |
else:
|
| 250 |
gr.Markdown("β CheXagent grounding not available.")
|
| 251 |
return demo
|
|
|
|
| 253 |
if __name__ == "__main__":
|
| 254 |
ui = create_ui()
|
| 255 |
ui.launch(server_name='0.0.0.0', server_port=7860, share=True)
|
| 256 |
+
|