add more results
Browse files
app.py
CHANGED
|
@@ -5,28 +5,81 @@ from css_html_js import custom_css
|
|
| 5 |
TITLE = """<h1 align="center" id="space-title">πΉπ Thai Sentence Embedding Leaderboard</h1>"""
|
| 6 |
|
| 7 |
INTRODUCTION_TEXT = """
|
| 8 |
-
π The πΉπ Thai Sentence Embedding Leaderboard aims to track, rank and evaluate open embedding models on Thai sentence embedding tasks.
|
| 9 |
-
## Dataset
|
| 10 |
-
π We evaluate models based on 3 datasets,
|
| 11 |
-
1. BM-PT3 Paper 1, contains 54 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/BM-pt3
|
| 12 |
-
- This test is for 15 years old Malaysia student, it is about reading comprehension and general knowledge for malay language.
|
| 13 |
-
2. Tatabahasa, contains 349 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/tatabahasabm.tripod.com
|
| 14 |
-
- This test is general test for malay grammar.
|
| 15 |
-
3. General high school science questions, contains 323 questions, https://huggingface.co/datasets/mesolitica/mysoalan.com-qa
|
| 16 |
-
- This test is general test for science.
|
| 17 |
-
4. Translated MMLU, https://huggingface.co/datasets/mesolitica/translated-MMLU
|
| 18 |
-
- This test is to test general knowledge, originally from MMLU.
|
| 19 |
-
## Contributions
|
| 20 |
-
1. Claude 1.3 and 2.0 Tatabahasa contributed by https://www.linkedin.com/in/fahim-surani
|
| 21 |
-
2. Claude 3.0 contributed by https://github.com/theblackcat102, https://huggingface.co/theblackcat102
|
| 22 |
## Tagging
|
| 23 |
-
π’
|
| 24 |
"""
|
| 25 |
|
| 26 |
results = [
|
| 27 |
{
|
| 28 |
'T': 'π’',
|
| 29 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
'Model Size (Million Parameters)': 570,
|
| 31 |
'Embedding Dimensions': 1024,
|
| 32 |
'Average (8 datasets)': 75.64,
|
|
@@ -35,9 +88,141 @@ results = [
|
|
| 35 |
'PairClassification (1 datasets)': 79.02,
|
| 36 |
'Retrieval (3 datasets)': 91.42,
|
| 37 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
{
|
| 39 |
'T': 'π¦',
|
| 40 |
-
'
|
| 41 |
'Embedding Dimensions': 1024,
|
| 42 |
'Average (8 datasets)': 74.86,
|
| 43 |
'STS Average (1 datasets)': 77.87,
|
|
@@ -47,6 +232,9 @@ results = [
|
|
| 47 |
},
|
| 48 |
]
|
| 49 |
|
|
|
|
|
|
|
|
|
|
| 50 |
data = pd.DataFrame(results)
|
| 51 |
|
| 52 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 5 |
TITLE = """<h1 align="center" id="space-title">πΉπ Thai Sentence Embedding Leaderboard</h1>"""
|
| 6 |
|
| 7 |
INTRODUCTION_TEXT = """
|
| 8 |
+
π The πΉπ Thai Sentence Embedding Leaderboard aims to track, rank and evaluate open embedding models on Thai sentence embedding tasks. Source code for evaluation at https://github.com/mrpeerat/Thai-Sentence-Vector-Benchmark, feel free to submit your own score at https://huggingface.co/spaces/panuthept/thai_sentence_embedding_benchmark/discussions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
## Tagging
|
| 10 |
+
π’ Open sourced π¦ API
|
| 11 |
"""
|
| 12 |
|
| 13 |
results = [
|
| 14 |
{
|
| 15 |
'T': 'π’',
|
| 16 |
+
'Model Name': '[XLMR-base](https://huggingface.co/FacebookAI/xlm-roberta-base)',
|
| 17 |
+
'Model Size (Million Parameters)': 279,
|
| 18 |
+
'Embedding Dimensions': 768,
|
| 19 |
+
'Average (8 datasets)': 37.95,
|
| 20 |
+
'STS Average (1 datasets)': 44.48,
|
| 21 |
+
'Classification (3 datasets)': 58.42,
|
| 22 |
+
'PairClassification (1 datasets)': 57.62,
|
| 23 |
+
'Retrieval (3 datasets)': 5.57,
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
'T': 'π’',
|
| 27 |
+
'Model Name': '[XLMR-large](https://huggingface.co/FacebookAI/xlm-roberta-large)',
|
| 28 |
+
'Model Size (Million Parameters)': 561,
|
| 29 |
+
'Embedding Dimensions': 1024,
|
| 30 |
+
'Average (8 datasets)': 38.59,
|
| 31 |
+
'STS Average (1 datasets)': 38.31,
|
| 32 |
+
'Classification (3 datasets)': 59.51,
|
| 33 |
+
'PairClassification (1 datasets)': 54.56,
|
| 34 |
+
'Retrieval (3 datasets)': 11.80,
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
'T': 'π’',
|
| 38 |
+
'Model Name': '[WangchanBERTa](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased)',
|
| 39 |
+
'Model Size (Million Parameters)': 106,
|
| 40 |
+
'Embedding Dimensions': 768,
|
| 41 |
+
'Average (8 datasets)': 36.34,
|
| 42 |
+
'STS Average (1 datasets)': 21.32,
|
| 43 |
+
'Classification (3 datasets)': 55.46,
|
| 44 |
+
'PairClassification (1 datasets)': 52.96,
|
| 45 |
+
'Retrieval (3 datasets)': 19.49,
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
'T': 'π’',
|
| 49 |
+
'Model Name': '[PhayaThaiBERT](https://huggingface.co/clicknext/phayathaibert)',
|
| 50 |
+
'Model Size (Million Parameters)': 278,
|
| 51 |
+
'Embedding Dimensions': 768,
|
| 52 |
+
'Average (8 datasets)': 55.38,
|
| 53 |
+
'STS Average (1 datasets)': 51.56,
|
| 54 |
+
'Classification (3 datasets)': 59.90,
|
| 55 |
+
'PairClassification (1 datasets)': 59.67,
|
| 56 |
+
'Retrieval (3 datasets)': 56.31,
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
'T': 'π’',
|
| 60 |
+
'Model Name': '[MPNet-multilingual](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)',
|
| 61 |
+
'Model Size (Million Parameters)': 278,
|
| 62 |
+
'Embedding Dimensions': 768,
|
| 63 |
+
'Average (8 datasets)': 66.14,
|
| 64 |
+
'STS Average (1 datasets)': 80.49,
|
| 65 |
+
'Classification (3 datasets)': 56.89,
|
| 66 |
+
'PairClassification (1 datasets)': 84.14,
|
| 67 |
+
'Retrieval (3 datasets)': 64.13,
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
'T': 'π’',
|
| 71 |
+
'Model Name': '[DistilUSE-multilingual](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)',
|
| 72 |
+
'Model Size (Million Parameters)': 135,
|
| 73 |
+
'Embedding Dimensions': 512,
|
| 74 |
+
'Average (8 datasets)': 51.45,
|
| 75 |
+
'STS Average (1 datasets)': 65.37,
|
| 76 |
+
'Classification (3 datasets)': 50.93,
|
| 77 |
+
'PairClassification (1 datasets)': 65.94,
|
| 78 |
+
'Retrieval (3 datasets)': 42.72,
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
'T': 'π’',
|
| 82 |
+
'Model Name': '[BGE-M3](https://huggingface.co/BAAI/bge-m3)',
|
| 83 |
'Model Size (Million Parameters)': 570,
|
| 84 |
'Embedding Dimensions': 1024,
|
| 85 |
'Average (8 datasets)': 75.64,
|
|
|
|
| 88 |
'PairClassification (1 datasets)': 79.02,
|
| 89 |
'Retrieval (3 datasets)': 91.42,
|
| 90 |
},
|
| 91 |
+
{
|
| 92 |
+
'T': 'π’',
|
| 93 |
+
'Model Name': '[SimCSE-XLMR-base](https://huggingface.co/kornwtp/simcse-model-XLMR)',
|
| 94 |
+
'Model Size (Million Parameters)': 279,
|
| 95 |
+
'Embedding Dimensions': 768,
|
| 96 |
+
'Average (8 datasets)': 53.83,
|
| 97 |
+
'STS Average (1 datasets)': 63.98,
|
| 98 |
+
'Classification (3 datasets)': 49.44,
|
| 99 |
+
'PairClassification (1 datasets)': 61.87,
|
| 100 |
+
'Retrieval (3 datasets)': 54.17,
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
'T': 'π’',
|
| 104 |
+
'Model Name': '[SimCSE-WangchanBERTa](https://huggingface.co/kornwtp/simcse-model-wangchanberta)',
|
| 105 |
+
'Model Size (Million Parameters)': 106,
|
| 106 |
+
'Embedding Dimensions': 768,
|
| 107 |
+
'Average (8 datasets)': 54.01,
|
| 108 |
+
'STS Average (1 datasets)': 60.73,
|
| 109 |
+
'Classification (3 datasets)': 56.71,
|
| 110 |
+
'PairClassification (1 datasets)': 59.14,
|
| 111 |
+
'Retrieval (3 datasets)': 51.05,
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
'T': 'π’',
|
| 115 |
+
'Model Name': '[SimCSE-PhayaThaiBERT](https://huggingface.co/kornwtp/simcse-model-phayathaibert)',
|
| 116 |
+
'Model Size (Million Parameters)': 278,
|
| 117 |
+
'Embedding Dimensions': 768,
|
| 118 |
+
'Average (8 datasets)': 60.02,
|
| 119 |
+
'STS Average (1 datasets)': None,
|
| 120 |
+
'Classification (3 datasets)': None,
|
| 121 |
+
'PairClassification (1 datasets)': None,
|
| 122 |
+
'Retrieval (3 datasets)': None,
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
'T': 'π’',
|
| 126 |
+
'Model Name': '[SCT-XLMR-base](https://huggingface.co/kornwtp/SCT-model-XLMR)',
|
| 127 |
+
'Model Size (Million Parameters)': 279,
|
| 128 |
+
'Embedding Dimensions': 768,
|
| 129 |
+
'Average (8 datasets)': 57.69,
|
| 130 |
+
'STS Average (1 datasets)': None,
|
| 131 |
+
'Classification (3 datasets)': None,
|
| 132 |
+
'PairClassification (1 datasets)': None,
|
| 133 |
+
'Retrieval (3 datasets)': None,
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
'T': 'π’',
|
| 137 |
+
'Model Name': '[SCT-WangchanBERTa](https://huggingface.co/kornwtp/SCT-model-wangchanberta)',
|
| 138 |
+
'Model Size (Million Parameters)': 106,
|
| 139 |
+
'Embedding Dimensions': 768,
|
| 140 |
+
'Average (8 datasets)': 62.22,
|
| 141 |
+
'STS Average (1 datasets)': None,
|
| 142 |
+
'Classification (3 datasets)': None,
|
| 143 |
+
'PairClassification (1 datasets)': None,
|
| 144 |
+
'Retrieval (3 datasets)': None,
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
'T': 'π’',
|
| 148 |
+
'Model Name': '[SCT-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-model-phayathaibert)',
|
| 149 |
+
'Model Size (Million Parameters)': 278,
|
| 150 |
+
'Embedding Dimensions': 768,
|
| 151 |
+
'Average (8 datasets)': 63.28,
|
| 152 |
+
'STS Average (1 datasets)': None,
|
| 153 |
+
'Classification (3 datasets)': None,
|
| 154 |
+
'PairClassification (1 datasets)': None,
|
| 155 |
+
'Retrieval (3 datasets)': None,
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
'T': 'π’',
|
| 159 |
+
'Model Name': '[SCT-KD-XLMR-base](https://huggingface.co/kornwtp/SCT-KD-model-XLMR)',
|
| 160 |
+
'Model Size (Million Parameters)': 279,
|
| 161 |
+
'Embedding Dimensions': 768,
|
| 162 |
+
'Average (8 datasets)': 65.37,
|
| 163 |
+
'STS Average (1 datasets)': None,
|
| 164 |
+
'Classification (3 datasets)': None,
|
| 165 |
+
'PairClassification (1 datasets)': None,
|
| 166 |
+
'Retrieval (3 datasets)': None,
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
'T': 'π’',
|
| 170 |
+
'Model Name': '[SCT-KD-WangchanBERTa](https://huggingface.co/kornwtp/SCT-KD-model-wangchanberta)',
|
| 171 |
+
'Model Size (Million Parameters)': 106,
|
| 172 |
+
'Embedding Dimensions': 768,
|
| 173 |
+
'Average (8 datasets)': 63.55,
|
| 174 |
+
'STS Average (1 datasets)': None,
|
| 175 |
+
'Classification (3 datasets)': None,
|
| 176 |
+
'PairClassification (1 datasets)': None,
|
| 177 |
+
'Retrieval (3 datasets)': None,
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
'T': 'π’',
|
| 181 |
+
'Model Name': '[SCT-KD-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-KD-model-phayathaibert)',
|
| 182 |
+
'Model Size (Million Parameters)': 278,
|
| 183 |
+
'Embedding Dimensions': 768,
|
| 184 |
+
'Average (8 datasets)': 66.00,
|
| 185 |
+
'STS Average (1 datasets)': None,
|
| 186 |
+
'Classification (3 datasets)': None,
|
| 187 |
+
'PairClassification (1 datasets)': None,
|
| 188 |
+
'Retrieval (3 datasets)': None,
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
'T': 'π’',
|
| 192 |
+
'Model Name': '[ConGen-XLMR-base](https://huggingface.co/kornwtp/ConGen-model-XLMR)',
|
| 193 |
+
'Model Size (Million Parameters)': 279,
|
| 194 |
+
'Embedding Dimensions': 768,
|
| 195 |
+
'Average (8 datasets)': 66.84,
|
| 196 |
+
'STS Average (1 datasets)': None,
|
| 197 |
+
'Classification (3 datasets)': None,
|
| 198 |
+
'PairClassification (1 datasets)': None,
|
| 199 |
+
'Retrieval (3 datasets)': None,
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
'T': 'π’',
|
| 203 |
+
'Model Name': '[ConGen-WangchanBERTa](https://huggingface.co/kornwtp/ConGen-model-wangchanberta)',
|
| 204 |
+
'Model Size (Million Parameters)': 106,
|
| 205 |
+
'Embedding Dimensions': 768,
|
| 206 |
+
'Average (8 datasets)': 67.17,
|
| 207 |
+
'STS Average (1 datasets)': None,
|
| 208 |
+
'Classification (3 datasets)': None,
|
| 209 |
+
'PairClassification (1 datasets)': None,
|
| 210 |
+
'Retrieval (3 datasets)': None,
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
'T': 'π’',
|
| 214 |
+
'Model Name': '[ConGen-PhayaThaiBERT](https://huggingface.co/kornwtp/ConGen-model-phayathaibert)',
|
| 215 |
+
'Model Size (Million Parameters)': 278,
|
| 216 |
+
'Embedding Dimensions': 768,
|
| 217 |
+
'Average (8 datasets)': 66.94,
|
| 218 |
+
'STS Average (1 datasets)': None,
|
| 219 |
+
'Classification (3 datasets)': None,
|
| 220 |
+
'PairClassification (1 datasets)': None,
|
| 221 |
+
'Retrieval (3 datasets)': None,
|
| 222 |
+
},
|
| 223 |
{
|
| 224 |
'T': 'π¦',
|
| 225 |
+
'Model Name': 'Cohere-embed-multilingual-v3.0',
|
| 226 |
'Embedding Dimensions': 1024,
|
| 227 |
'Average (8 datasets)': 74.86,
|
| 228 |
'STS Average (1 datasets)': 77.87,
|
|
|
|
| 232 |
},
|
| 233 |
]
|
| 234 |
|
| 235 |
+
# Sort by average
|
| 236 |
+
results = sorted(results, key=lambda x: x['Average (8 datasets)'], reverse=True)
|
| 237 |
+
|
| 238 |
data = pd.DataFrame(results)
|
| 239 |
|
| 240 |
demo = gr.Blocks(css=custom_css)
|