Update app.py
Browse files
app.py
CHANGED
|
@@ -47,7 +47,6 @@ def CTXGen(X1, X2, τ, g_num, length_range):
|
|
| 47 |
|
| 48 |
model.eval()
|
| 49 |
with torch.no_grad():
|
| 50 |
-
new_seq = None
|
| 51 |
IDs = []
|
| 52 |
generated_seqs = []
|
| 53 |
generated_seqs_FINAL = []
|
|
@@ -64,6 +63,7 @@ def CTXGen(X1, X2, τ, g_num, length_range):
|
|
| 64 |
'<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>','<high>','<low>','[UNK]','[SEP]','[PAD]','[CLS]','[MASK]']
|
| 65 |
start_time = time.time()
|
| 66 |
while count < gen_num:
|
|
|
|
| 67 |
if is_stopped:
|
| 68 |
return pd.DataFrame(), "output.csv"
|
| 69 |
|
|
@@ -109,7 +109,7 @@ def CTXGen(X1, X2, τ, g_num, length_range):
|
|
| 109 |
input_ids = vocab_mlm.__getitem__(generated_seq)
|
| 110 |
logits = model(torch.tensor([input_ids]).to(device), idx_msa)
|
| 111 |
cls_mask_logits = logits[0, 1, :]
|
| 112 |
-
cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=
|
| 113 |
|
| 114 |
generated_seq[2] = "[MASK]"
|
| 115 |
input_ids = vocab_mlm.__getitem__(generated_seq)
|
|
|
|
| 47 |
|
| 48 |
model.eval()
|
| 49 |
with torch.no_grad():
|
|
|
|
| 50 |
IDs = []
|
| 51 |
generated_seqs = []
|
| 52 |
generated_seqs_FINAL = []
|
|
|
|
| 63 |
'<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>','<high>','<low>','[UNK]','[SEP]','[PAD]','[CLS]','[MASK]']
|
| 64 |
start_time = time.time()
|
| 65 |
while count < gen_num:
|
| 66 |
+
new_seq = None
|
| 67 |
if is_stopped:
|
| 68 |
return pd.DataFrame(), "output.csv"
|
| 69 |
|
|
|
|
| 109 |
input_ids = vocab_mlm.__getitem__(generated_seq)
|
| 110 |
logits = model(torch.tensor([input_ids]).to(device), idx_msa)
|
| 111 |
cls_mask_logits = logits[0, 1, :]
|
| 112 |
+
cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=85)
|
| 113 |
|
| 114 |
generated_seq[2] = "[MASK]"
|
| 115 |
input_ids = vocab_mlm.__getitem__(generated_seq)
|