Delete utils.py
Browse files
utils.py
DELETED
|
@@ -1,132 +0,0 @@
|
|
| 1 |
-
import torch.nn as nn
|
| 2 |
-
import copy, math
|
| 3 |
-
import torch
|
| 4 |
-
import numpy as np
|
| 5 |
-
import torch.nn.functional as F
|
| 6 |
-
|
| 7 |
-
from vocab import PepVocab
|
| 8 |
-
|
| 9 |
-
def create_vocab():
|
| 10 |
-
vocab_mlm = PepVocab()
|
| 11 |
-
vocab_mlm.vocab_from_txt('/home/ubuntu/work/gecheng/conoGen_final/vocab.txt')
|
| 12 |
-
# vocab_mlm.token_to_idx['-'] = 23
|
| 13 |
-
return vocab_mlm
|
| 14 |
-
|
| 15 |
-
def show_parameters(model: nn.Module, show_all=False, show_trainable=True):
|
| 16 |
-
|
| 17 |
-
mlp_pa = {name:param.requires_grad for name, param in model.named_parameters()}
|
| 18 |
-
|
| 19 |
-
if show_all:
|
| 20 |
-
print('All parameters:')
|
| 21 |
-
print(mlp_pa)
|
| 22 |
-
|
| 23 |
-
if show_trainable:
|
| 24 |
-
print('Trainable parameters:')
|
| 25 |
-
print(list(filter(lambda x: x[1], list(mlp_pa.items()))))
|
| 26 |
-
|
| 27 |
-
class ContraLoss(nn.Module):
|
| 28 |
-
def __init__(self, *args, **kwargs) -> None:
|
| 29 |
-
super(ContraLoss, self).__init__(*args, **kwargs)
|
| 30 |
-
|
| 31 |
-
self.temp = 0.07
|
| 32 |
-
|
| 33 |
-
def contrastive_loss(self, proj1, proj2):
|
| 34 |
-
proj1 = F.normalize(proj1, dim=1)
|
| 35 |
-
proj2 = F.normalize(proj2, dim=1)
|
| 36 |
-
dot = torch.matmul(proj1, proj2.T) / self.temp
|
| 37 |
-
dot_max, _ = torch.max(dot, dim=1, keepdim=True)
|
| 38 |
-
dot = dot - dot_max.detach()
|
| 39 |
-
|
| 40 |
-
exp_dot = torch.exp(dot)
|
| 41 |
-
log_prob = torch.diag(dot, 0) - torch.log(exp_dot.sum(1))
|
| 42 |
-
cont_loss = -log_prob.mean()
|
| 43 |
-
return cont_loss
|
| 44 |
-
|
| 45 |
-
def forward(self, x, y, label=None):
|
| 46 |
-
return self.contrastive_loss(x, y)
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
import numpy as np
|
| 50 |
-
from tqdm import tqdm
|
| 51 |
-
import torch
|
| 52 |
-
import torch.nn as nn
|
| 53 |
-
import random
|
| 54 |
-
from transformers import set_seed
|
| 55 |
-
|
| 56 |
-
def show_parameters(model: nn.Module, show_all=False, show_trainable=True):
|
| 57 |
-
|
| 58 |
-
mlp_pa = {name:param.requires_grad for name, param in model.named_parameters()}
|
| 59 |
-
|
| 60 |
-
if show_all:
|
| 61 |
-
print('All parameters:')
|
| 62 |
-
print(mlp_pa)
|
| 63 |
-
|
| 64 |
-
if show_trainable:
|
| 65 |
-
print('Trainable parameters:')
|
| 66 |
-
print(list(filter(lambda x: x[1], list(mlp_pa.items()))))
|
| 67 |
-
|
| 68 |
-
def extract_args(text):
|
| 69 |
-
str_list = []
|
| 70 |
-
substr = ""
|
| 71 |
-
for s in text:
|
| 72 |
-
if s in ('(', ')', '=', ',', ' ', '\n', "'"):
|
| 73 |
-
if substr != '':
|
| 74 |
-
str_list.append(substr)
|
| 75 |
-
substr = ''
|
| 76 |
-
else:
|
| 77 |
-
substr += s
|
| 78 |
-
|
| 79 |
-
def eval_one_epoch(loader, cono_encoder):
|
| 80 |
-
cono_encoder.eval()
|
| 81 |
-
batch_loss = []
|
| 82 |
-
for i, data in enumerate(tqdm(loader)):
|
| 83 |
-
|
| 84 |
-
loss = cono_encoder.contra_forward(data)
|
| 85 |
-
batch_loss.append(loss.item())
|
| 86 |
-
print(f'[INFO] Test batch {i} loss: {loss.item()}')
|
| 87 |
-
|
| 88 |
-
total_loss = np.mean(batch_loss)
|
| 89 |
-
print(f'[INFO] Total loss: {total_loss}')
|
| 90 |
-
return total_loss
|
| 91 |
-
|
| 92 |
-
def setup_seed(seed):
|
| 93 |
-
torch.manual_seed(seed)
|
| 94 |
-
torch.cuda.manual_seed_all(seed)
|
| 95 |
-
np.random.seed(seed)
|
| 96 |
-
random.seed(seed)
|
| 97 |
-
torch.backends.cudnn.deterministic = True
|
| 98 |
-
set_seed(seed)
|
| 99 |
-
|
| 100 |
-
class CrossEntropyLossWithMask(torch.nn.Module):
|
| 101 |
-
def __init__(self, weight=None):
|
| 102 |
-
super(CrossEntropyLossWithMask, self).__init__()
|
| 103 |
-
self.criterion = nn.CrossEntropyLoss(reduction='none')
|
| 104 |
-
|
| 105 |
-
def forward(self, y_pred, y_true, mask):
|
| 106 |
-
(pos_mask, label_mask, seq_mask) = mask
|
| 107 |
-
loss = self.criterion(y_pred, y_true) # (6912)
|
| 108 |
-
|
| 109 |
-
pos_loss = (loss * pos_mask).sum() / torch.sum(pos_mask)
|
| 110 |
-
label_loss = (loss * label_mask).sum() / torch.sum(label_mask)
|
| 111 |
-
seq_loss = (loss * seq_mask).sum() / torch.sum(seq_mask)
|
| 112 |
-
|
| 113 |
-
loss = pos_loss + label_loss/2 + seq_loss/3
|
| 114 |
-
|
| 115 |
-
return loss
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
def mask(x, start, end, time):
|
| 119 |
-
ske_pos = np.where(np.array(x)=='C')[0] - start
|
| 120 |
-
lables_pos = np.array([1, 2]) - start
|
| 121 |
-
ske_pos = list(filter(lambda x: end-start >= x >= 0, ske_pos))
|
| 122 |
-
lables_pos = list(filter(lambda x: x >= 0, lables_pos))
|
| 123 |
-
weight = np.ones(end - start+1)
|
| 124 |
-
rand = np.random.rand()
|
| 125 |
-
if rand < 0.5:
|
| 126 |
-
weight[lables_pos] = 100000
|
| 127 |
-
else:
|
| 128 |
-
weight[lables_pos] = 1
|
| 129 |
-
mask_pos = np.random.choice(range(start, end+1), time, p=weight/np.sum(weight), replace=False)
|
| 130 |
-
for idx in mask_pos:
|
| 131 |
-
x[idx] = '[MASK]'
|
| 132 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|