optipfair-bias-analyzer / diagnostic_tool.py
oopere's picture
feat: add diagnostic tools and configuration for timeout and memory issues in HF Spaces
b1f0789
raw
history blame
10.1 kB
"""
Diagnostic tool to identify timeout vs memory issues in HF Spaces.
Run this script in HF Spaces to get detailed performance information.
"""
import psutil
import time
import sys
import traceback
from datetime import datetime
def get_memory_info():
"""Gets detailed information about system memory usage."""
memory = psutil.virtual_memory()
return {
"total_gb": memory.total / (1024**3),
"available_gb": memory.available / (1024**3),
"used_gb": memory.used / (1024**3),
"percent_used": memory.percent,
"free_gb": memory.free / (1024**3),
}
def get_cpu_info():
"""Gets information about CPU usage."""
return {
"cpu_percent": psutil.cpu_percent(interval=1),
"cpu_count": psutil.cpu_count(),
"load_avg": psutil.getloadavg() if hasattr(psutil, "getloadavg") else None,
}
def monitor_model_loading(model_name: str, timeout_seconds: int = 300):
"""
Monitors model loading and detects if it fails due to timeout or memory.
Args:
model_name: HuggingFace model name to load
timeout_seconds: Maximum wait time in seconds
Returns:
dict with diagnostic information
"""
print(f"\n{'='*60}")
print(f"πŸ” MODEL LOADING DIAGNOSTIC: {model_name}")
print(f"{'='*60}\n")
# Initial system state
print("πŸ“Š INITIAL SYSTEM STATE:")
mem_before = get_memory_info()
cpu_before = get_cpu_info()
print(f" - Available memory: {mem_before['available_gb']:.2f} GB")
print(f" - Used memory: {mem_before['used_gb']:.2f} GB ({mem_before['percent_used']:.1f}%)")
print(f" - Available CPUs: {cpu_before['cpu_count']} cores")
print(f" - CPU usage: {cpu_before['cpu_percent']:.1f}%")
start_time = time.time()
result = {
"model_name": model_name,
"success": False,
"error_type": None,
"error_message": None,
"elapsed_time": 0,
"memory_before": mem_before,
"memory_after": None,
"memory_peak": mem_before["used_gb"],
"timeout_seconds": timeout_seconds,
}
try:
print(f"\n⏳ Starting model loading (timeout: {timeout_seconds}s)...")
print(f" Start time: {datetime.now().strftime('%H:%M:%S')}")
# Import transformers here to measure its impact
from transformers import AutoModel, AutoTokenizer
# Real-time monitoring
model = None
tokenizer = None
last_memory_check = time.time()
print("\nπŸ“ˆ REAL-TIME MONITORING:")
# Load tokenizer first (faster)
print(" [1/2] Loading tokenizer...")
tokenizer_start = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer_time = time.time() - tokenizer_start
print(f" βœ“ Tokenizer loaded in {tokenizer_time:.2f}s")
# Check memory after tokenizer
mem_after_tokenizer = get_memory_info()
print(f" - Memory used: {mem_after_tokenizer['used_gb']:.2f} GB ({mem_after_tokenizer['percent_used']:.1f}%)")
# Load model (can be slow)
print("\n [2/2] Loading model...")
model_start = time.time()
# Load with low memory usage if possible
model = AutoModel.from_pretrained(
model_name,
low_cpu_mem_usage=True, # Reduces memory usage during loading
torch_dtype="auto",
)
model_time = time.time() - model_start
total_time = time.time() - start_time
print(f" βœ“ Model loaded in {model_time:.2f}s")
print(f"\nβœ… LOADING SUCCESSFUL in {total_time:.2f}s")
# Final system state
mem_after = get_memory_info()
cpu_after = get_cpu_info()
print(f"\nπŸ“Š FINAL SYSTEM STATE:")
print(f" - Available memory: {mem_after['available_gb']:.2f} GB")
print(f" - Used memory: {mem_after['used_gb']:.2f} GB ({mem_after['percent_used']:.1f}%)")
print(f" - Memory increase: {mem_after['used_gb'] - mem_before['used_gb']:.2f} GB")
print(f" - CPU usage: {cpu_after['cpu_percent']:.1f}%")
result["success"] = True
result["elapsed_time"] = total_time
result["memory_after"] = mem_after
result["tokenizer_time"] = tokenizer_time
result["model_time"] = model_time
except MemoryError as e:
elapsed = time.time() - start_time
mem_current = get_memory_info()
print(f"\n❌ MEMORY ERROR after {elapsed:.2f}s")
print(f" Memory used at failure: {mem_current['used_gb']:.2f} GB ({mem_current['percent_used']:.1f}%)")
result["error_type"] = "MEMORY_ERROR"
result["error_message"] = str(e)
result["elapsed_time"] = elapsed
result["memory_after"] = mem_current
except TimeoutError as e:
elapsed = time.time() - start_time
mem_current = get_memory_info()
print(f"\n⏰ TIMEOUT ERROR after {elapsed:.2f}s")
print(f" Memory used: {mem_current['used_gb']:.2f} GB ({mem_current['percent_used']:.1f}%)")
result["error_type"] = "TIMEOUT_ERROR"
result["error_message"] = str(e)
result["elapsed_time"] = elapsed
result["memory_after"] = mem_current
except Exception as e:
elapsed = time.time() - start_time
mem_current = get_memory_info()
print(f"\n❌ UNEXPECTED ERROR after {elapsed:.2f}s")
print(f" Type: {type(e).__name__}")
print(f" Message: {str(e)}")
print(f" Memory used: {mem_current['used_gb']:.2f} GB ({mem_current['percent_used']:.1f}%)")
# Analyze error message to detect memory issues
error_msg = str(e).lower()
if any(keyword in error_msg for keyword in ["memory", "ram", "oom", "out of memory"]):
result["error_type"] = "MEMORY_ERROR"
print("\nπŸ” DIAGNOSIS: Error appears to be MEMORY related")
elif "timeout" in error_msg or elapsed >= timeout_seconds * 0.95:
result["error_type"] = "TIMEOUT_ERROR"
print("\nπŸ” DIAGNOSIS: Error appears to be TIMEOUT related")
else:
result["error_type"] = "OTHER_ERROR"
result["error_message"] = str(e)
result["elapsed_time"] = elapsed
result["memory_after"] = mem_current
result["traceback"] = traceback.format_exc()
return result
def print_recommendations(result: dict):
"""Prints recommendations based on diagnostic results."""
print(f"\n{'='*60}")
print("πŸ’‘ RECOMMENDATIONS")
print(f"{'='*60}\n")
if result["success"]:
print("βœ… Model loaded successfully.")
print(f" Total time: {result['elapsed_time']:.2f}s")
if result["elapsed_time"] > 240: # > 4 minutes
print("\n⚠️ Warning: Load time is very high (>4min)")
print(" - Consider increasing timeout to 600s (10 minutes)")
print(" - Or use a smaller model")
elif result["error_type"] == "MEMORY_ERROR":
print("❌ PROBLEM DETECTED: OUT OF MEMORY\n")
print("Solutions:")
print(" 1. Use a smaller model (1B or 1.7B parameters)")
print(" 2. Request more memory in HF Spaces (PRO plan)")
print(" 3. Use quantization (int8 or int4) to reduce memory usage:")
print(" ```python")
print(" from transformers import BitsAndBytesConfig")
print(" quantization_config = BitsAndBytesConfig(load_in_8bit=True)")
print(" model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config)")
print(" ```")
if result["memory_after"]:
print(f"\n Available memory: {result['memory_after']['available_gb']:.2f} GB")
print(f" More memory needed for this model")
elif result["error_type"] == "TIMEOUT_ERROR":
print("❌ PROBLEM DETECTED: TIMEOUT\n")
print("Solutions:")
print(f" 1. Increase timeout from {result['timeout_seconds']}s to 600s (10 minutes):")
print(" ```python")
print(" response = requests.post(url, json=payload, timeout=600)")
print(" ```")
print(" 2. Implement async loading with progress updates")
print(" 3. Cache pre-loaded models in HF Spaces")
print(" 4. Use smaller models that load faster")
else:
print("❌ PROBLEM DETECTED: UNEXPECTED ERROR\n")
print("Review the full traceback for more details")
if "traceback" in result:
print("\n" + result["traceback"])
print(f"\n{'='*60}\n")
if __name__ == "__main__":
# Models to test (from smallest to largest)
test_models = [
"meta-llama/Llama-3.2-1B", # Small model
# "meta-llama/Llama-3.2-3B", # Medium model (uncomment to test)
# "meta-llama/Llama-3-8B", # Large model (uncomment to test)
]
# You can change the timeout here
TIMEOUT = 300 # 5 minutes
results = []
for model_name in test_models:
result = monitor_model_loading(model_name, timeout_seconds=TIMEOUT)
results.append(result)
print_recommendations(result)
# If failed, don't test larger models
if not result["success"]:
print("\n⚠️ Stopping tests due to error.")
print(" Larger models will likely fail as well.")
break
# Wait a bit between tests
time.sleep(2)
# Final summary
print(f"\n{'='*60}")
print("πŸ“‹ TEST SUMMARY")
print(f"{'='*60}\n")
for i, result in enumerate(results, 1):
status = "βœ…" if result["success"] else "❌"
time_str = f"{result['elapsed_time']:.1f}s"
print(f"{status} Test {i}: {result['model_name']}")
print(f" Time: {time_str} | Error: {result['error_type'] or 'None'}")
print()