Spaces:
Runtime error
Runtime error
Nupur Kumari
commited on
Commit
Β·
db5f8d8
1
Parent(s):
084b2e4
negative prompt
Browse files- app.py +32 -11
- pipelines/flux_pipeline/pipeline.py +35 -3
- pipelines/flux_pipeline/transformer.py +14 -1
app.py
CHANGED
|
@@ -73,7 +73,7 @@ def encode_target_images(images, pipeline):
|
|
| 73 |
|
| 74 |
|
| 75 |
@spaces.GPU(duration=120)
|
| 76 |
-
def generate_image(text, img1, img2, img3, guidance_scale, inference_steps, seed,
|
| 77 |
if enable_cpu_offload:
|
| 78 |
pipeline.enable_sequential_cpu_offload()
|
| 79 |
input_images = [img1, img2, img3]
|
|
@@ -104,6 +104,9 @@ def generate_image(text, img1, img2, img3, guidance_scale, inference_steps, seed
|
|
| 104 |
generator = torch.Generator(device="cpu").manual_seed(seed),
|
| 105 |
joint_attention_kwargs={'shared_attn': True, 'num': numref},
|
| 106 |
return_dict=False,
|
|
|
|
|
|
|
|
|
|
| 107 |
)[0][0]
|
| 108 |
output = rearrange(output, "b c h (n w) -> (b n) c h w", n=numref)[::numref]
|
| 109 |
img = Image.fromarray( (( torch.clip(output[0].float(), -1., 1.).permute(1,2,0).cpu().numpy()*0.5+0.5)*255).astype(np.uint8) )
|
|
@@ -120,7 +123,10 @@ def get_example():
|
|
| 120 |
"./imgs/test_cases/action_figure/2.jpg",
|
| 121 |
3.5,
|
| 122 |
42,
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
],
|
| 125 |
[
|
| 126 |
"A penguin plushie wearing pink sunglasses is lounging on a beach. Realistic shot.",
|
|
@@ -129,7 +135,10 @@ def get_example():
|
|
| 129 |
"./imgs/test_cases/penguin/2.jpg",
|
| 130 |
3.5,
|
| 131 |
42,
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
| 133 |
],
|
| 134 |
[
|
| 135 |
"A toy on a beach. Waves in the background. Realistic shot.",
|
|
@@ -138,16 +147,19 @@ def get_example():
|
|
| 138 |
"./imgs/test_cases/rc_car/04.jpg",
|
| 139 |
3.5,
|
| 140 |
42,
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
| 142 |
],
|
| 143 |
]
|
| 144 |
return case
|
| 145 |
|
| 146 |
-
def run_for_examples(text, img1, img2, img3, guidance_scale, seed,
|
| 147 |
inference_steps = 30
|
| 148 |
|
| 149 |
return generate_image(
|
| 150 |
-
text, img1, img2, img3, guidance_scale, inference_steps, seed,
|
| 151 |
)
|
| 152 |
|
| 153 |
description = """
|
|
@@ -210,13 +222,17 @@ with gr.Blocks() as demo:
|
|
| 210 |
label="Seed", minimum=0, maximum=2147483647, value=42, step=1
|
| 211 |
)
|
| 212 |
|
| 213 |
-
rigid_object = gr.Checkbox(
|
| 214 |
-
label="rigid_object", info="Whether its a rigid object or a deformable object like pet animals, wearable etc.", value=True,
|
| 215 |
-
)
|
| 216 |
enable_cpu_offload = gr.Checkbox(
|
| 217 |
label="Enable CPU Offload", info="Enable CPU Offload to avoid memory issues", value=False,
|
| 218 |
)
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
# generate
|
| 221 |
generate_button = gr.Button("Generate Image")
|
| 222 |
|
|
@@ -236,8 +252,10 @@ with gr.Blocks() as demo:
|
|
| 236 |
guidance_scale_input,
|
| 237 |
num_inference_steps,
|
| 238 |
seed_input,
|
| 239 |
-
rigid_object,
|
| 240 |
enable_cpu_offload,
|
|
|
|
|
|
|
|
|
|
| 241 |
],
|
| 242 |
outputs=output_image,
|
| 243 |
)
|
|
@@ -252,7 +270,10 @@ with gr.Blocks() as demo:
|
|
| 252 |
image_input_3,
|
| 253 |
guidance_scale_input,
|
| 254 |
seed_input,
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
| 256 |
],
|
| 257 |
outputs=output_image,
|
| 258 |
)
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
@spaces.GPU(duration=120)
|
| 76 |
+
def generate_image(text, img1, img2, img3, guidance_scale, inference_steps, seed, enable_cpu_offload=False, neg_prompt="", true_cfg=1.0, image_cfg=0.0):
|
| 77 |
if enable_cpu_offload:
|
| 78 |
pipeline.enable_sequential_cpu_offload()
|
| 79 |
input_images = [img1, img2, img3]
|
|
|
|
| 104 |
generator = torch.Generator(device="cpu").manual_seed(seed),
|
| 105 |
joint_attention_kwargs={'shared_attn': True, 'num': numref},
|
| 106 |
return_dict=False,
|
| 107 |
+
negative_prompt=neg_prompt,
|
| 108 |
+
true_cfg_scale=true_cfg,
|
| 109 |
+
image_cfg_scale=image_cfg,
|
| 110 |
)[0][0]
|
| 111 |
output = rearrange(output, "b c h (n w) -> (b n) c h w", n=numref)[::numref]
|
| 112 |
img = Image.fromarray( (( torch.clip(output[0].float(), -1., 1.).permute(1,2,0).cpu().numpy()*0.5+0.5)*255).astype(np.uint8) )
|
|
|
|
| 123 |
"./imgs/test_cases/action_figure/2.jpg",
|
| 124 |
3.5,
|
| 125 |
42,
|
| 126 |
+
False,
|
| 127 |
+
"",
|
| 128 |
+
1.0,
|
| 129 |
+
0.0,
|
| 130 |
],
|
| 131 |
[
|
| 132 |
"A penguin plushie wearing pink sunglasses is lounging on a beach. Realistic shot.",
|
|
|
|
| 135 |
"./imgs/test_cases/penguin/2.jpg",
|
| 136 |
3.5,
|
| 137 |
42,
|
| 138 |
+
False,
|
| 139 |
+
"",
|
| 140 |
+
1.0,
|
| 141 |
+
0.0,
|
| 142 |
],
|
| 143 |
[
|
| 144 |
"A toy on a beach. Waves in the background. Realistic shot.",
|
|
|
|
| 147 |
"./imgs/test_cases/rc_car/04.jpg",
|
| 148 |
3.5,
|
| 149 |
42,
|
| 150 |
+
False,
|
| 151 |
+
"",
|
| 152 |
+
1.0,
|
| 153 |
+
0.0,
|
| 154 |
],
|
| 155 |
]
|
| 156 |
return case
|
| 157 |
|
| 158 |
+
def run_for_examples(text, img1, img2, img3, guidance_scale, seed, enable_cpu_offload=False, neg_prompt="", true_cfg=1.0, image_cfg=0.0):
|
| 159 |
inference_steps = 30
|
| 160 |
|
| 161 |
return generate_image(
|
| 162 |
+
text, img1, img2, img3, guidance_scale, inference_steps, seed, enable_cpu_offload, neg_prompt, true_cfg, image_cfg
|
| 163 |
)
|
| 164 |
|
| 165 |
description = """
|
|
|
|
| 222 |
label="Seed", minimum=0, maximum=2147483647, value=42, step=1
|
| 223 |
)
|
| 224 |
|
|
|
|
|
|
|
|
|
|
| 225 |
enable_cpu_offload = gr.Checkbox(
|
| 226 |
label="Enable CPU Offload", info="Enable CPU Offload to avoid memory issues", value=False,
|
| 227 |
)
|
| 228 |
|
| 229 |
+
with gr.Accordion("Advanced Options (True CFG, true_cfg_scale=1 means use fake CFG, >1 means use true CFG", open=False): # noqa E501
|
| 230 |
+
neg_prompt = gr.Textbox(
|
| 231 |
+
label="Negative Prompt",
|
| 232 |
+
value="")
|
| 233 |
+
true_cfg = gr.Slider(1.0, 10.0, 1.5, step=0.1, label="true CFG. Recommended to be 1.5")
|
| 234 |
+
image_cfg = gr.Slider(0.0, 10.0, 0.0, step=0.1, label="image CFG scale, will increase the image alignment but longer run time and lower text alignment. Recommended to be 1.0")
|
| 235 |
+
|
| 236 |
# generate
|
| 237 |
generate_button = gr.Button("Generate Image")
|
| 238 |
|
|
|
|
| 252 |
guidance_scale_input,
|
| 253 |
num_inference_steps,
|
| 254 |
seed_input,
|
|
|
|
| 255 |
enable_cpu_offload,
|
| 256 |
+
neg_prompt,
|
| 257 |
+
true_cfg,
|
| 258 |
+
image_cfg,
|
| 259 |
],
|
| 260 |
outputs=output_image,
|
| 261 |
)
|
|
|
|
| 270 |
image_input_3,
|
| 271 |
guidance_scale_input,
|
| 272 |
seed_input,
|
| 273 |
+
enable_cpu_offload,
|
| 274 |
+
neg_prompt,
|
| 275 |
+
true_cfg,
|
| 276 |
+
image_cfg,
|
| 277 |
],
|
| 278 |
outputs=output_image,
|
| 279 |
)
|
pipelines/flux_pipeline/pipeline.py
CHANGED
|
@@ -98,6 +98,19 @@ def retrieve_timesteps(
|
|
| 98 |
return timesteps, num_inference_steps
|
| 99 |
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
class SynCDFluxPipeline(FluxPipeline):
|
| 102 |
|
| 103 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
|
@@ -162,6 +175,7 @@ class SynCDFluxPipeline(FluxPipeline):
|
|
| 162 |
latents_ref: Optional[torch.Tensor] = None,
|
| 163 |
latents_mask: Optional[torch.Tensor] = None,
|
| 164 |
return_latents: bool=False,
|
|
|
|
| 165 |
):
|
| 166 |
r"""
|
| 167 |
Function invoked when calling the pipeline for generation.
|
|
@@ -389,7 +403,7 @@ class SynCDFluxPipeline(FluxPipeline):
|
|
| 389 |
return_dict=False,
|
| 390 |
)[0]
|
| 391 |
|
| 392 |
-
if do_true_cfg:
|
| 393 |
neg_noise_pred = self.transformer(
|
| 394 |
hidden_states=latents,
|
| 395 |
timestep=timestep / 1000,
|
|
@@ -398,10 +412,28 @@ class SynCDFluxPipeline(FluxPipeline):
|
|
| 398 |
encoder_hidden_states=negative_prompt_embeds,
|
| 399 |
txt_ids=text_ids,
|
| 400 |
img_ids=latent_image_ids,
|
| 401 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 402 |
return_dict=False,
|
| 403 |
)[0]
|
| 404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
# compute the previous noisy sample x_t -> x_t-1
|
| 407 |
latents_dtype = latents.dtype
|
|
|
|
| 98 |
return timesteps, num_inference_steps
|
| 99 |
|
| 100 |
|
| 101 |
+
def normalized_guidance_image(neg_noise_pred, noise_pred, image_noise_pred, true_cfg_scale, image_cfg_scale):
|
| 102 |
+
diff_img = image_noise_pred - neg_noise_pred
|
| 103 |
+
diff_txt = noise_pred - image_noise_pred
|
| 104 |
+
|
| 105 |
+
diff_norm_txt = diff_txt.norm(p=2, dim=[-1, -2], keepdim=True)
|
| 106 |
+
diff_norm_img = diff_img.norm(p=2, dim=[-1, -2], keepdim=True)
|
| 107 |
+
min_norm = torch.minimum(diff_norm_img, diff_norm_txt)
|
| 108 |
+
diff_txt = diff_txt * torch.minimum(torch.ones_like(diff_txt), min_norm / diff_norm_txt)
|
| 109 |
+
diff_img = diff_img * torch.minimum(torch.ones_like(diff_txt), min_norm / diff_norm_img)
|
| 110 |
+
pred_guided = image_noise_pred + image_cfg_scale * diff_img + true_cfg_scale * diff_txt
|
| 111 |
+
return pred_guided
|
| 112 |
+
|
| 113 |
+
|
| 114 |
class SynCDFluxPipeline(FluxPipeline):
|
| 115 |
|
| 116 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
|
|
|
| 175 |
latents_ref: Optional[torch.Tensor] = None,
|
| 176 |
latents_mask: Optional[torch.Tensor] = None,
|
| 177 |
return_latents: bool=False,
|
| 178 |
+
image_cfg_scale: float=0.0,
|
| 179 |
):
|
| 180 |
r"""
|
| 181 |
Function invoked when calling the pipeline for generation.
|
|
|
|
| 403 |
return_dict=False,
|
| 404 |
)[0]
|
| 405 |
|
| 406 |
+
if do_true_cfg and i>=1:
|
| 407 |
neg_noise_pred = self.transformer(
|
| 408 |
hidden_states=latents,
|
| 409 |
timestep=timestep / 1000,
|
|
|
|
| 412 |
encoder_hidden_states=negative_prompt_embeds,
|
| 413 |
txt_ids=text_ids,
|
| 414 |
img_ids=latent_image_ids,
|
| 415 |
+
joint_attention_kwargs={**self.joint_attention_kwargs, 'neg_mode': True},
|
| 416 |
return_dict=False,
|
| 417 |
)[0]
|
| 418 |
+
|
| 419 |
+
if image_cfg_scale > 0:
|
| 420 |
+
image_noise_pred = self.transformer(
|
| 421 |
+
hidden_states=latents,
|
| 422 |
+
timestep=timestep / 1000,
|
| 423 |
+
guidance=guidance,
|
| 424 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
| 425 |
+
encoder_hidden_states=negative_prompt_embeds,
|
| 426 |
+
txt_ids=text_ids,
|
| 427 |
+
img_ids=latent_image_ids,
|
| 428 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 429 |
+
return_dict=False,
|
| 430 |
+
)[0]
|
| 431 |
+
|
| 432 |
+
if image_cfg_scale == 0:
|
| 433 |
+
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
| 434 |
+
else:
|
| 435 |
+
noise_pred = normalized_guidance_image(neg_noise_pred, noise_pred, image_noise_pred, true_cfg_scale, image_cfg_scale)
|
| 436 |
+
|
| 437 |
|
| 438 |
# compute the previous noisy sample x_t -> x_t-1
|
| 439 |
latents_dtype = latents.dtype
|
pipelines/flux_pipeline/transformer.py
CHANGED
|
@@ -79,6 +79,7 @@ class FluxAttnProcessor2_0:
|
|
| 79 |
scale: float = 1.0,
|
| 80 |
timestep: float = 0,
|
| 81 |
val: bool = False,
|
|
|
|
| 82 |
) -> torch.FloatTensor:
|
| 83 |
if mode == 'w': # and single:
|
| 84 |
ref_dict[self.name] = hidden_states.detach()
|
|
@@ -133,7 +134,19 @@ class FluxAttnProcessor2_0:
|
|
| 133 |
query = apply_rotary_emb(query, image_rotary_emb)
|
| 134 |
key = apply_rotary_emb(key, image_rotary_emb)
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 138 |
|
| 139 |
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
| 79 |
scale: float = 1.0,
|
| 80 |
timestep: float = 0,
|
| 81 |
val: bool = False,
|
| 82 |
+
neg_mode: bool = False,
|
| 83 |
) -> torch.FloatTensor:
|
| 84 |
if mode == 'w': # and single:
|
| 85 |
ref_dict[self.name] = hidden_states.detach()
|
|
|
|
| 134 |
query = apply_rotary_emb(query, image_rotary_emb)
|
| 135 |
key = apply_rotary_emb(key, image_rotary_emb)
|
| 136 |
|
| 137 |
+
if neg_mode:
|
| 138 |
+
res = int(math.sqrt((end_of_hidden_states-(text_seq if encoder_hidden_states is None else 0)) // num))
|
| 139 |
+
hw = res*res
|
| 140 |
+
mask_ = torch.ones(1, res, num*res, res, num*res).to(query.device)
|
| 141 |
+
for i in range(num):
|
| 142 |
+
mask_[:, :, i*res:(i+1)*res, :, i*res:(i+1)*res] = 1
|
| 143 |
+
mask_ = rearrange(mask_, "b h w h1 w1 -> b (h w) (h1 w1)")
|
| 144 |
+
mask = torch.ones(1, num*hw + 512, num*hw + 512, device=query.device, dtype=query.dtype)
|
| 145 |
+
mask[:, 512:, 512:] = mask_
|
| 146 |
+
mask = mask.bool()
|
| 147 |
+
mask = rearrange(mask.unsqueeze(0).expand(attn.heads, -1, -1, -1), "nh b ... -> b nh ...")
|
| 148 |
+
|
| 149 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
| 150 |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 151 |
|
| 152 |
hidden_states = hidden_states.to(query.dtype)
|