upload 2 files
Browse files- app.py +33 -0
- requiremets.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sklearn.linear_model import LinearRegression
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
# サンプルデータの作成
|
| 7 |
+
np.random.seed(0)
|
| 8 |
+
dates = pd.date_range('20230101', periods=100)
|
| 9 |
+
sales = np.random.randint(100, 200, size=(100,))
|
| 10 |
+
data = pd.DataFrame({'date': dates, 'sales': sales})
|
| 11 |
+
|
| 12 |
+
# モデルの訓練
|
| 13 |
+
model = LinearRegression()
|
| 14 |
+
data['date_ordinal'] = pd.to_datetime(data['date']).map(pd.Timestamp.toordinal)
|
| 15 |
+
X = data['date_ordinal'].values.reshape(-1, 1)
|
| 16 |
+
y = data['sales'].values
|
| 17 |
+
model.fit(X, y)
|
| 18 |
+
|
| 19 |
+
def predict_sales(future_date):
|
| 20 |
+
future_date_ordinal = pd.to_datetime(future_date).toordinal()
|
| 21 |
+
prediction = model.predict(np.array([[future_date_ordinal]]))
|
| 22 |
+
return prediction[0]
|
| 23 |
+
|
| 24 |
+
# Gradioインターフェースの定義
|
| 25 |
+
iface = gr.Interface(
|
| 26 |
+
fn=predict_sales,
|
| 27 |
+
inputs=gr.inputs.Textbox(label="Enter future date (YYYY-MM-DD)"),
|
| 28 |
+
outputs=gr.outputs.Textbox(label="Predicted sales")
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
if __name__ == "__main__":
|
| 32 |
+
iface.launch()
|
| 33 |
+
|
requiremets.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
| 3 |
+
scikit-learn
|
| 4 |
+
numpy
|
| 5 |
+
|