Commit
·
010edb7
1
Parent(s):
74e9a4d
Add views
Browse files
views.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import vec2text
|
| 3 |
+
import torch
|
| 4 |
+
from umap import UMAP
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import numpy as np
|
| 7 |
+
from streamlit_plotly_events import plotly_events
|
| 8 |
+
from resources import reduce_embeddings
|
| 9 |
+
import utils
|
| 10 |
+
import pandas as pd
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def diffs(embeddings: np.ndarray, corrector):
|
| 14 |
+
st.text(f"Embedding shape: {embeddings.shape}")
|
| 15 |
+
st.html('<a href="https://www.flaticon.com/free-icons/array" title="array icons">Array icons created by Voysla - Flaticon</a>')
|
| 16 |
+
|
| 17 |
+
def plot(df: pd.DataFrame, embeddings: np.ndarray, vectors_2d, reducer, corrector):
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Add a scatter plot using Plotly
|
| 21 |
+
fig = px.scatter(
|
| 22 |
+
x=vectors_2d[:, 0],
|
| 23 |
+
y=vectors_2d[:, 1],
|
| 24 |
+
opacity=0.6,
|
| 25 |
+
hover_data={"Title": df["title"]},
|
| 26 |
+
labels={'x': 'UMAP Dimension 1', 'y': 'UMAP Dimension 2'},
|
| 27 |
+
title="UMAP Scatter Plot of Reddit Titles",
|
| 28 |
+
color_discrete_sequence=["#ff504c"] # Set default blue color for points
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Customize the layout to adapt to browser settings (light/dark mode)
|
| 32 |
+
fig.update_layout(
|
| 33 |
+
template=None, # Let Plotly adapt automatically based on user settings
|
| 34 |
+
plot_bgcolor="rgba(0, 0, 0, 0)",
|
| 35 |
+
paper_bgcolor="rgba(0, 0, 0, 0)"
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
x, y = 0.0, 0.0
|
| 39 |
+
vec = np.array([x, y]).astype("float32")
|
| 40 |
+
|
| 41 |
+
# Add a card container to the right of the content with Streamlit columns
|
| 42 |
+
col1, col2 = st.columns([0.6, 0.4]) # Adjusting ratio to allocate space for the card container
|
| 43 |
+
|
| 44 |
+
with col1:
|
| 45 |
+
# Main content stays here (scatterplot, form, etc.)
|
| 46 |
+
selected_points = plotly_events(fig, click_event=True, hover_event=False, #override_height=600, override_width="100%"
|
| 47 |
+
)
|
| 48 |
+
with st.form(key="form1_main"):
|
| 49 |
+
if selected_points:
|
| 50 |
+
clicked_point = selected_points[0]
|
| 51 |
+
x_coord = x = clicked_point['x']
|
| 52 |
+
y_coord = y = clicked_point['y']
|
| 53 |
+
|
| 54 |
+
x = st.number_input("X Coordinate", value=x, format="%.10f")
|
| 55 |
+
y = st.number_input("Y Coordinate", value=y, format="%.10f")
|
| 56 |
+
vec = np.array([x, y]).astype("float32")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
submit_button = st.form_submit_button("Submit")
|
| 60 |
+
|
| 61 |
+
if selected_points or submit_button:
|
| 62 |
+
inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
|
| 63 |
+
inferred_embedding = inferred_embedding.astype("float32")
|
| 64 |
+
|
| 65 |
+
output = vec2text.invert_embeddings(
|
| 66 |
+
embeddings=torch.tensor(inferred_embedding).cuda(),
|
| 67 |
+
corrector=corrector,
|
| 68 |
+
num_steps=20,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
st.text(str(output))
|
| 72 |
+
st.text(str(inferred_embedding))
|
| 73 |
+
else:
|
| 74 |
+
st.text("Click on a point in the scatterplot to see its coordinates.")
|
| 75 |
+
|
| 76 |
+
with col2:
|
| 77 |
+
closest_sentence_index = utils.find_exact_match(vectors_2d, vec, decimals=3)
|
| 78 |
+
st.markdown(
|
| 79 |
+
f"### Selected text:\n```console\n{df.title.iloc[closest_sentence_index] if closest_sentence_index > -1 else '[no selected text]'}\n```"
|
| 80 |
+
)
|