Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Load the model and processor
|
| 7 |
+
model_name = "ds4sd/SmolDocling-256M-preview"
|
| 8 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 9 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 10 |
+
model_name, torch_dtype=torch.bfloat16
|
| 11 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
|
| 13 |
+
# Define the inference function
|
| 14 |
+
def process_image(image):
|
| 15 |
+
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
| 16 |
+
outputs = model.generate(**inputs, max_new_tokens=1024)
|
| 17 |
+
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 18 |
+
return result
|
| 19 |
+
|
| 20 |
+
# Create the Gradio interface
|
| 21 |
+
iface = gr.Interface(
|
| 22 |
+
fn=process_image,
|
| 23 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 24 |
+
outputs="text",
|
| 25 |
+
title="SmolDocling Document Conversion",
|
| 26 |
+
description="Upload an image of a document page to convert it to structured text."
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
if __name__ == "__main__":
|
| 30 |
+
iface.launch()
|