Spaces:
Running
on
Zero
Running
on
Zero
offloading to cpu
Browse files
app.py
CHANGED
|
@@ -10,7 +10,10 @@ flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.c
|
|
| 10 |
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"), iterations=50)
|
| 11 |
|
| 12 |
@spaces.GPU
|
| 13 |
-
def generate(slider_x, slider_y, prompt,
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# check if avg diff for directions need to be re-calculated
|
| 16 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
|
@@ -25,16 +28,18 @@ def generate(slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1,
|
|
| 25 |
comma_concepts_x = ', '.join(slider_x)
|
| 26 |
comma_concepts_y = ', '.join(slider_y)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
| 32 |
|
| 33 |
-
def update_x(x,y,prompt,
|
| 34 |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
|
| 35 |
return image
|
| 36 |
|
| 37 |
-
def update_y(x,y,prompt,
|
| 38 |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
|
| 39 |
return image
|
| 40 |
|
|
@@ -69,8 +74,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 69 |
y_concept_1 = gr.State("")
|
| 70 |
y_concept_2 = gr.State("")
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
|
| 75 |
with gr.Row():
|
| 76 |
with gr.Column():
|
|
@@ -84,10 +91,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 84 |
output_image = gr.Image(elem_id="image_out")
|
| 85 |
|
| 86 |
submit.click(fn=generate,
|
| 87 |
-
inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
| 88 |
-
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
| 89 |
-
x.change(fn=update_x, inputs=[x,y, prompt,
|
| 90 |
-
y.change(fn=update_y, inputs=[x,y, prompt,
|
| 91 |
|
| 92 |
if __name__ == "__main__":
|
| 93 |
demo.launch()
|
|
|
|
| 10 |
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"), iterations=50)
|
| 11 |
|
| 12 |
@spaces.GPU
|
| 13 |
+
def generate(slider_x, slider_y, prompt,
|
| 14 |
+
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
| 15 |
+
avg_diff_x_1, avg_diff_x_2,
|
| 16 |
+
avg_diff_y_1, avg_diff_y_2):
|
| 17 |
|
| 18 |
# check if avg diff for directions need to be re-calculated
|
| 19 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
|
|
|
| 28 |
comma_concepts_x = ', '.join(slider_x)
|
| 29 |
comma_concepts_y = ', '.join(slider_y)
|
| 30 |
|
| 31 |
+
avg_diff_x_1 = clip_slider.avg_diff[0].cpu()
|
| 32 |
+
avg_diff_x_2 = clip_slider.avg_diff[1].cpu()
|
| 33 |
+
avg_diff_y_1 = clip_slider.avg_diff_2nd[0].cpu()
|
| 34 |
+
avg_diff_y_2 = clip_slider.avg_diff_2nd[1].cpu()
|
| 35 |
|
| 36 |
+
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
| 37 |
|
| 38 |
+
def update_x(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
| 39 |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
|
| 40 |
return image
|
| 41 |
|
| 42 |
+
def update_y(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
| 43 |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=8)
|
| 44 |
return image
|
| 45 |
|
|
|
|
| 74 |
y_concept_1 = gr.State("")
|
| 75 |
y_concept_2 = gr.State("")
|
| 76 |
|
| 77 |
+
avg_diff_x_1 = gr.State()
|
| 78 |
+
avg_diff_x_2 = gr.State()
|
| 79 |
+
avg_diff_y_1 = gr.State()
|
| 80 |
+
avg_diff_y_2 = gr.State()
|
| 81 |
|
| 82 |
with gr.Row():
|
| 83 |
with gr.Column():
|
|
|
|
| 91 |
output_image = gr.Image(elem_id="image_out")
|
| 92 |
|
| 93 |
submit.click(fn=generate,
|
| 94 |
+
inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
| 95 |
+
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
| 96 |
+
x.change(fn=update_x, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
| 97 |
+
y.change(fn=update_y, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
| 98 |
|
| 99 |
if __name__ == "__main__":
|
| 100 |
demo.launch()
|